Most facilities have grounded electrical systems, so that in the event of a lightning strike or utility overvoltage, current will find a safe path to earth. A ground electrode provides the contact between the electrical system and the earth. To ensure a reliable connection to earth, electrical codes, engineering standards, and local standards often specify a minimum impedance for the ground electrode.
Most facilities have grounded electrical systems, so that in the event of a lightning strike or utility overvoltage, current will find a safe path to earth. A ground electrode provides the contact between the electrical system and the earth. To ensure a reliable connection to earth, electrical codes, engineering standards, and local standards often specify a minimum impedance for the ground electrode. The International Electrical Testing Association specifies ground electrode testing every three years for a system in good condition with average up-time requirements.
Fluke earth ground testers provide quick, accurate impedance measurements through several test methods: 3- and 4-pole Fall-of-Potential testing, selective testing, stakeless testing and 2-pole testing.