The information disclosed herein was originated by and is the property of Densitron Corporation. Densitron Corporation reserves all patent, proprietary, design, use, sales, manufacturing and reproduction rights thereto.

REVISIONS						
REV	DESCRIPTION DATE APPROVED					
Α	A RELEASED ON ECN #E3241 08/31/06 RM					

- 1. Specification subject to change without notice.
- 2. All dimensions and specifications apply to standard modules. This information may vary for modules with optional features.
- 3. All dimensions are in millimeters.
- 4. Precautions: These precautions apply equally to modules from all makers, not just Densitron. Violation of these guidelines may void the warranty and can cause problems ranging from erratic operation to catastrophic display failure.

Handling precautions:

♦ This device is susceptible to Electro-Static Discharge (ESD) damage. Observe Anti-Static precautions.

Power supply precautions:

- Identify and, at all times, observe absolute maximum ratings for both logic and LC drivers. Note that there is some variance between models.
- Prevent the application of reverse polarity to VDD and Vss, however briefly.
- Use a clean power source free from transients. Power up conditions are occasionally "jolting" and may exceed the maximum ratings of the module.
- ♦ The +5V power of the module should also supply the power to all devices which may access the display. Don't allow the data bus to be driven when the logic supply to the module is turned off.
- DO NOT install a capacitor between the Vo (contrast) pin and ground. VDD must, at all times, exceed the Vo voltage level. The capacitor combines with the contrast potentiometer to form an R-C network which "holds-up" Vo, at power-down, possibly damaging the module.

Operating precautions:

- DO NOT plug or unplug the module when the system is powered up.
- ♦ Minimize the cable length between the module and host MPU. (Recommended max. length 30 cm).
- For models with EL or CCFL backlights, do not disable the backlight by interrupting the HV line. Unloaded inverters produce voltage extremes which may arc within a cable or at the display.
- Operate the module within the limits of the modules temperature specifications.

Mechanical / Environmental precautions:

- Improper soldering is the major cause of module difficulty. Use of flux cleaner is not recommended as they may seep under the elastomeric connection and cause display failure. Densitron recommends the use of Kester "245" no-clean solder.
- Mount the module so that it is free from torque and mechanical stress.
- Surface of LCD panel should not be touched or scratched. The display front surface is an easily scratched, plastic
 polarizer. Avoid contact and clean only when necessary with soft, absorbent cotton dampened with petroleum
 benzene.
- ALWAYS employ anti-static procedure while handling the module.
- Prevent moisture build-up upon the module and observe the environmental constraints for storage temperature and humidity.
- DO NOT store in direct sunlight.
- If leakage of the liquid crystal material should occur, avoid contact with this material, particularly ingestion. If the body or clothing becomes contaminated by the liquid crystal material, wash thoroughly with water and soap.

Notes: (unless otherwise specified)

Unless otherwise	APPROVALS	DENSITRON CORPORATION				
specified:						
Dimensions are mm						
Tolerances are:		TITLE OA VOAS OR ARIHOO LOR MA	ND. II E			
$X = \pm 3$ $X = \pm 0.5$		64 X 240 GRAPHICS LCD MODULE				
$.X = \pm 0.05$		DWG. NO.				
FSCM NO. 62483		LMR3267	SHEET 1 OF 8			

1.0 DESCRIPTION

Dot matrix display module consisting of liquid Crystal Display, CMOS driver and Toshiba T6963C controller LSI, printed circuit board, metal support frame.

Available LC fluid types are: NTN (supertwisted nematic) and NTN-H (extended temperature range NTN).

Other options includes (EL) backlighting, on-board negative voltage generation circuitry.

2.0 MECHANICAL CHARACTERISTICS

Item	Specifications	Unit
Package Dimensions	180.0 (W) x 65.0 (H) x 12.1 max (D)	mm
Display format	240 dots (W) x 64 dots (H)	-
Driving method	1/64	duty
Dot size	0.49 (W) x 0.49 (H)	mm
Dot pitch	0.53 (W) x 0.53 (H)	mm
Active display area	127.16 (W) x 33.88 (H)	mm
Viewing area	132.0 (W) x 39.0 (H)	mm
ROHS Compliant	Yes	

Notes:W-Width;H-Height;D-Depth.

3.0 ABSOLUTE MAXIMUM RATINGS

Vss=0V;Ta=25°C

Item	Symbol	N٦	NTN		NTN-H	
		Min.	Max.	Min.	Max.	
Logic supply voltage	VDD-VSS	0	7	0	7	V
LC driver supply voltage	VDD-VEE	0	23	0	23	V
Operating temperature	Тор	0	+50	-20	+70 (Note 3)	°C
Storage temperature (Note 1)	Tst	-20	+70	-30	+80	
Humidity: Operating (@40°C)	-	-	85%	-	85%	RH (Note 2)
Non-operating (@40°C)	-	-	95%	-	95%	RH (Note 2)

Notes: 1: Tested to 100 hrs.

2: Refers to non-condensing conditions.

3. It is not recommended to operate EL lamp above +50°C

4.0 ELECTRICAL CHARACTERISTICS

VDD=5±0.25V;Ta=25°C

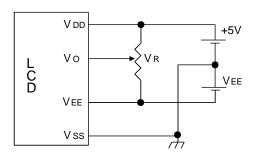
						- ,
Item	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Input "High" voltage	VIH	-	0.8	-	Vdd	V
Input "Low" voltage	VIL	-	Vss	-	0.2Vdd	V
Output "High" voltage	Vон	Iон=0.205mA	2.2	-	-	V
Output "Low" voltage	Vol	IoL=1.2mA	-	-	0.8	V
Power supply current	lee	VEE=-20V	-	1	-	mA
Power supply current	IDD	VDD=5.0V	-	9	1	mA

DWG. NO.	L NAD 2027			REV.
	LMR3267	SHEET 2	OF 8	Α

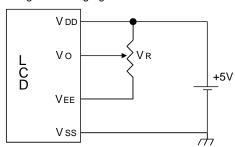
5.0 RECOMMENDED LC DRIVE VOLTAGE (VDD-Vo)

VDD=5.0±0.25V

Temperature	NTN	NTN-H
Ta= -20°C	-	19.5
Ta= 0°C	17.3	17.3
Ta= 25°C	15.7	15.7
Ta= 50°C	15.0	15.0
Ta=70°C	-	14.2

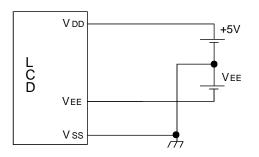

6.0 BACKLIGHT SPECIFICATIONS:

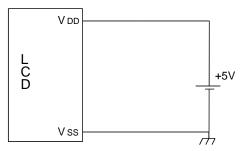
Ta=20°C,60%RH,Darkroom.


Item	Symbol	Тур.	Max.	Unit
EL lamp input voltage	VEL	100	150	Vrms
EL lamp input current	IEL	14.0	20.0	mA
Life to Life initial brightness	-	2500	3000	Hours
EL lamp input frequency	FEL	400	800	Hz
Recommended backlight inverter	-	DAS5V14	-	-

7.0 POWER SUPPLY

• NTN, NTN-H

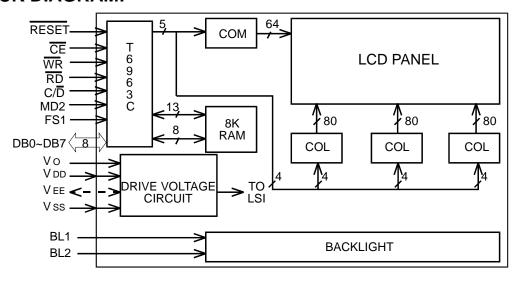



 NTN, NTN-H with on-board negative voltage generator

VR = 10K - 20K ohm

- NTN, NTN-H with temperature compensation
- NTN, NTN-H with on-board negative voltage generator and temperature compensation

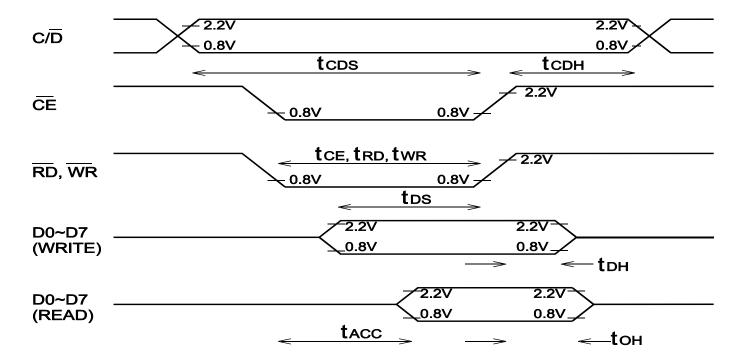
DWG. NO. LMR3267	SHEET	3	of 8	REV A
------------------	-------	---	------	----------


8.0 INTERFACE DESCRIPTION

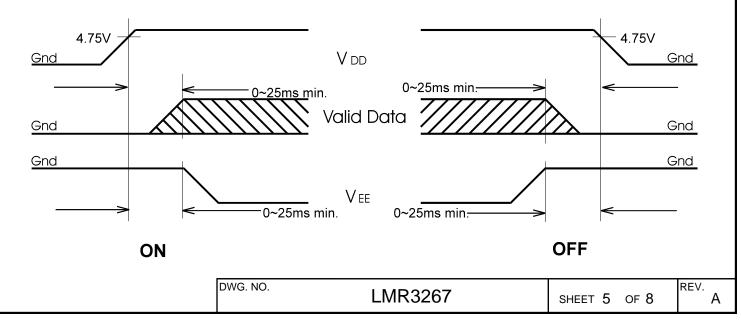
Pin No.	Symbol	I/O	Function		
1	FG	-	Frame Ground		
2	Vss	-	Ground (0V)		
3	Vdd	-	Logic Supply Voltage (+5V)		
4	Vo	-	LC drive voltage for contrast adjustment		
5	WR	ı	Data write Active Low		
6	RD		Data read Active Low		
7	CE		Chip enable Active Low		
8	C/D	ı	WR="L"C/D="H": Command write C/D="L": Data write		
			RD="L"C/D="H": Status read C/D="L": Data read		
9	VEE	I(O)	Negative voltage input for LC drive (Negative voltage output for		
			models with on-board negative voltage generator)		
10	RESET	l	Chip reset Active Low		
11	DB0	I/O	Bi-directional data bus line 0		
12	DB1	I/O	Bi-directional data bus line 1		
13	DB2	I/O	Bi-directional data bus line 2		
14	DB3	I/O	Bi-directional data bus line 3		
15	DB4	I/O	Bi-directional data bus line 4		
16	DB5	I/O	Bi-directional data bus line 5		
17	DB6	I/O	Bi-directional data bus line 6		
18	DB7	I/O	Bi-directional data bus line 7		
19	FS		Terminals for selection of font size		
20	N/C	-	No connection		
BL1	VEL	-	EL backlight input voltage (from output to DC-AC inverter)		
BL2	VEL	-	EL backlight input voltage (form output to DC-AC inverter)		

8.2 Font Selection

Font Selection	Н	L
FS	5 x 8	7 x 8

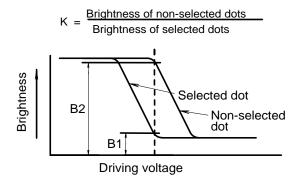

9.0 BLOCK DIAGRAM:

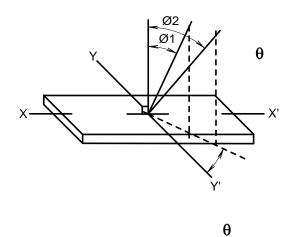
DWG. NO. LMR3267 SHEET 4 OF 8 REV. A


10.0 TIMING CHARACTERISTICS

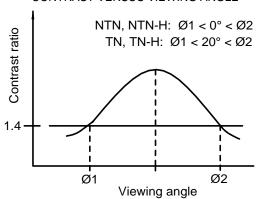
Item	Symbol	Min.	Тур.	Max.	Unit
C/D Set up time	tcds	100	-	-	nS
C/D Hold time	tcdh	10	-	-	nS
CE, RD, WR pulse width	tce, trd,twr	80	-	-	nS
Data set up time	tos	80	-	-	nS
Data hold time	tdH	40	-	-	nS
Access time	tacc	-	-	150	nS
Output hold time	toн	10	-	50	nS

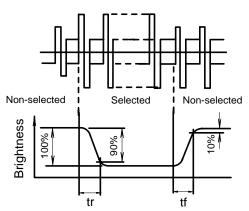
11.0 VOLTAGE SEQUENCING

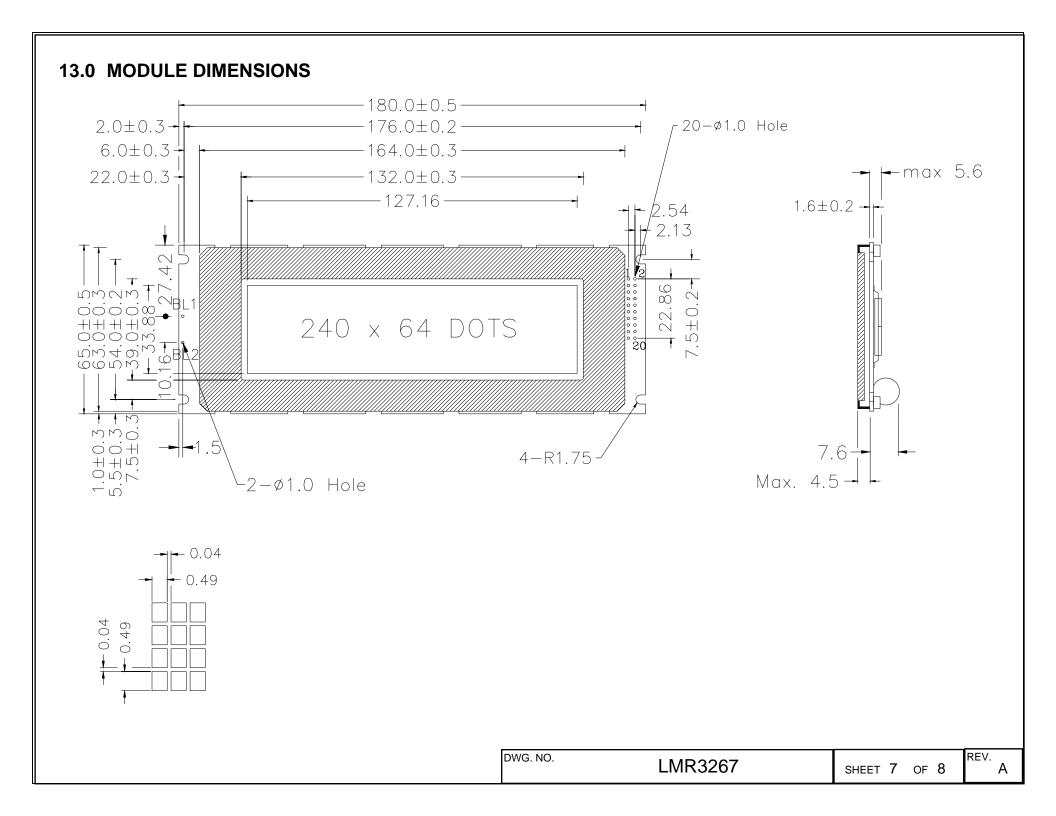

To prevent applying a DC voltage to the LC panel and inducing an electro-chemical effect, please observe the following power supply ON/OFF sequence to prevent DC driving of LC panel or latching-up of CMOS LSI circuits:


12.0 OPTICAL CHARACTERISTICS

Item	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Contrast ratio	K	Ø=20° θ=0°	4	-	-	-
Viewing angle	Ø2-Ø1	θ=0° K≥1.4	40	-	-	Deg.
	θ	Ø=20° K=1.4	±30	-	-	Deg.
Response time Rise	tr	Ø=20° θ=0°	-	150	250	mS
Fall	tf	Ø=20° θ=0°	-	150	250	mS


DEFINITION OF CONTRAST RATIO (K)


DEFINITION OF ANGLES Ø AND


CONTRAST VERSUS VIEWING ANGLE

DEFINITION OF OPTICAL RESPONSE

DWG. NO. LMR3267 SHEET 6 OF 8 REV. A

14.0 PART NUMBER DESCRIPTION FOR AVAILABLE OPTIONS

LMR3267①264G240345

- 1 POLARIZER TYPE
 - A = Reflective: light background, no backlight
 - B = Transflective: light background with LED backlight
- 2 NOT APPLICABLE LEAVE BLANK
- FLUID TYPE AND POWER SUPPLY
 - D = NTN with +5VDC and external negative voltage operation
 - S = NTN with +5VDC operation (on-board negative voltage generation)
 - H = NTN-H with +5VDC and external negative voltage operation
 - W = NTN-H with +5VDC operation (on-board negative voltage generation)
- FLUID TYPE AND TEMPERATURE COMPENSATION CIRCUIT
 - C = NTN, NTN-H with on-board temperature compensation circuitry N = NTN, NTN-H
- S COLOR FOR NTN FLUID
 - G = Gray background
 - Y = Yellow background

DWG. NO. LMR3267 SHEET 8 OF 8 REV.