

Circuit Diagrams

BA 9054
BA 9054/_ 2 _

MK 9054N

MK 9054N/1_

Connection Terminals

Terminal designation	Signal designation
A1, A2	Auxiliary voltage
i, k	Current measuring input
$11,12,14$	1st changeover contact
$21,22,24$	2nd changeover contact

Your Advantages

- Protection against defect by overvoltage
- Preventive maintenance
- For better productivity
- Quicker fault locating
- Precise and reliable

Features

- According to IEC/EN 60 255, DIN VDE 0435-303, IEC/EN 60 947-1
- to: monitor DC and AC
- BA 9054 with measuring ranges from 15 mV to 1000 V
- MK 9054N with measuring ranges from 15 mV to 500 V
- High overload possible
- Input frequency up to 5 kHz
- Galvanic separation between Auxiliary Circuit - measuring ciruit
- Auxiliary supply AC/DC; BA 9054 with AC
- BA 9054 optionally with start-up delay (MK = standard)
- with time delay, up to max. 100 sec
- BA 9054 optionally with safe separation to IEC/EN 61140
- MK 9054N optionally with remote potentiometer
- As option with manual reset
- LED indicators for operation and contact position
- MK 9054N as option with pluggable terminal blocks for easy exchange of devices
- with screw terminals
- or with cage clamp terminals
- Width BA 9054: 45 mm

Width MK 9054N: 22.5 mm

Approvals and Markings

Applications

Monitoring voltage in AC or DC systems

Function

The relays measure the arithmetic mean value of the rectified measuring voltage. The AC units are adjusted to the r.m.s value. They have settings for response value and hysteresis. The units work as overvoltage relays but can also be used for undervoltage detection. The hysteresis is dependent on the response value.

2 time delays are possible in different variants:
The start up delay t_{a} operates only when connecting the auxiliary supply. The response delay t_{v} is active after exceeding a response value. On overcurrent relays the delay is active when the current goes over the tripping value, on undercurrent relays when the current drops below the hysteresis value.

Indicators

green upper LED:
yellow lower LED:
on, when auxiliary supply connected on, when output relay acitvated

Function Diagram without Start-up Delay

Function Diagram with Start-up Delay

Version BA 9054/_1_: 2 changeover contacts

Version BA 9054/_20, /_21, /_22, /_23, /_24: 1 changeover contact, measuring range ≥ 70... 700 V
At version BA 9054/6__ with manual reset the contacts remain in the fault state after detecting a fault or after to has elapsed. The contacts are reset by disconnecting the supply voltage.

Input (e, f)

BA 9054 with 1 Measuring range for $A C$ a n d $D C$			
Measuring range ${ }^{1)}$		internal resistance	max. permissible contin. voltage
AC	DC	$20 \mathrm{k} \Omega$	10 V
$6 \ldots 60 \mathrm{mV}$	$5.4 \ldots 54 \mathrm{mV}$	$40 \mathrm{k} \Omega$	100 V
$15 \ldots 150 \mathrm{mV}$	$13.5 \ldots 135 \mathrm{mV}$	$270 \mathrm{k} \Omega$	250 V
$50 \ldots 500 \mathrm{mV}$	$45 \ldots 450 \mathrm{mV}$	200 V	
$0.5 \ldots 5 \mathrm{~V}$	$0.45 \ldots 4.5 \mathrm{~V}$	$500 \mathrm{k} \Omega$	300 V
$1 \ldots 10 \mathrm{~V}$	$0.9 \ldots 9.0 \mathrm{~V}$	$1 \mathrm{M} \Omega$	$500 \mathrm{~V}^{2)}$
$5 \ldots 50 \mathrm{~V}$	$4.5 \ldots 45 \mathrm{~V}$	$2 \mathrm{M} \Omega$	$500 \mathrm{~V}^{2)}$
$25 \ldots 250 \mathrm{~V}$	$22.5 \ldots 225 \mathrm{~V}$	$2 \mathrm{M} \Omega$	$500 \mathrm{~V}^{2)}$
$50 \ldots 500 \mathrm{~V}$	$45 \ldots 450 \mathrm{~V}$	$2 \mathrm{M} \Omega$	$700 \mathrm{~V}^{4)}$
$70 \ldots 700 \mathrm{~V}^{3)}$	$63 \ldots 630 \mathrm{~V}$	$3 \mathrm{M} \Omega$	$1000 \mathrm{~V}^{4)}$
$100 \ldots 1000 \mathrm{~V}^{3)}$	$90 \ldots 900 \mathrm{~V}$	$3 \mathrm{M} \Omega$	

1) DC or AC voltage $50 \ldots 5000 \mathrm{~Hz}$
(Other frequency ranges of $10 \ldots 5000 \mathrm{~Hz}$, e.g. $16 \frac{2}{3} \mathrm{~Hz}$ on request)
${ }^{2}$) at Overvoltage category II: 600 V
2) only with BA 9054/_20; /_21; /_22; /_23; /_24
(Version: 1 changeover contact)
${ }^{4)}$ at overvoltage category II: 1000 V
Please note:
Measuring ranges 6 ... 60 mV only available at variant BA 9054/080 (Using only for current sensing via shunt!)

MK 9054N with 1 Measuring range for AC a n d DC			
Measuring range ${ }^{1)}$		internal resistance	max. permissible contin. voltage
AC	DC	$20 \mathrm{k} \Omega$	10 V
$6 \ldots 60 \mathrm{mV}$	$5.4 \ldots 54 \mathrm{mV}$	$40 \mathrm{k} \Omega$	100 V
$15 \ldots 150 \mathrm{mV}$	$13.5 \ldots 135 \mathrm{mV}$	$270 \mathrm{k} \Omega$	250 V
$50 \ldots 500 \mathrm{mV}$	$45 \ldots 450 \mathrm{mV}$	$500 \mathrm{k} \Omega$	300 V
$0.5 \ldots 5 \mathrm{~V}$	$0.45 \ldots 4.5 \mathrm{~V}$	500 V	
$1 \ldots 10 \mathrm{~V}$	$0.9 \ldots 9.0 \mathrm{~V}$	$1 \mathrm{M} \Omega$	300
$5 \ldots 50 \mathrm{~V}$	$4.5 \ldots 45 \mathrm{~V}$	$2 \mathrm{M} \Omega$	$500 \mathrm{~V}^{2)}$
$25 \ldots 250 \mathrm{~V}$	$22.5 \ldots 225 \mathrm{~V}$	$2 \mathrm{M} \Omega$	$500 \mathrm{~V}^{2)}$
$50 \ldots 500 \mathrm{~V}$	$45 \ldots 450 \mathrm{~V}$	$2 \mathrm{M} \Omega$	$500 \mathrm{~V}^{2)}$

1) DC or AC voltage $50 \ldots 5000 \mathrm{~Hz}$
(Other frequency ranges of $10 \ldots 5000 \mathrm{~Hz}$, e.g. $16 \frac{1}{3} \mathrm{~Hz}$ on request)
${ }^{2)}$ Not suitable for 400 / 690 V-mains (systems)

Please note:

To avoid measuring mistakes, on units with $m V$ input the input must always be terminated. In addition screened wires should be used..

Measuring ranges $6 \ldots 60 \mathrm{mV}+15 \ldots 150 \mathrm{mV}$
(Using only for current sensing via shunt!)

Measuring principle:
Adjustment:

Temperature influence:
arithmetic mean value
The AC-devices can also monitor DCvoltage. The scale offset in this case is $\left(\bar{U}=0.90 U_{\text {eff }}\right)$ $<0.05 \% / \mathrm{K}$

Setting Ranges

Setting
Response value:
Hysteresis
at AC:
at DC:
Accuracy:
Response value at
Potentiometer right stop (max): $0 \ldots+8 \%$
Potentiometer left stop (min): $\quad-10 \ldots .+8 \%$
Repeat accuracy: $\leq \pm 0.5 \%$
Recovery time
at devices with manual reset
(Reset by braking
of the auxiliary voltage)
BA 9054/6_ _; MK 9054N/6_ _: $\leq 1 \mathrm{~s}$
(dependent to function and auxiliary voltage) infinite variable at logarythmic scale from $0 \ldots 20 \mathrm{~s}, 0 \ldots 30 \mathrm{~s}, 0 \ldots 60 \mathrm{~s}, 0 \ldots 100 \mathrm{~s}$ setting $0 \mathrm{~s}=$ without time delay
Start-up delay t_{a} :
BA 9054/1 _ _ :

MK 9054N:
infinite variable $0.1 U_{N} \ldots 1 U_{N}$ relative scale
infinite variable $0.5 \ldots 0.98$ of setting value infinite variable $0.5 \ldots 0.96$ of setting value
$1 \ldots 20 \mathrm{~s} ; 1 \ldots 60 \mathrm{~s} ; 1 \ldots 100 \mathrm{~s}$, adjustable on logarithmic scale. t_{a} is started when the supply voltage is connected. During elapse of time the output contact is in good state $0.1 \ldots 20 \mathrm{~s} ; 0.1 \ldots 60 \mathrm{~s} ; 0.1 \ldots 100 \mathrm{~s}$

Auxiliary Circuit BA 9054 and MK 9054N

Auxiliary voltage $\mathbf{U}_{\mathrm{H}}(\mathrm{A} 1, \mathrm{~A} 2)$
BA 9054, Nominal voltage:
Voltage range:
Nominal frequency:
AC 24, 42, 110, 127, 230, 400 V
$0.8 \ldots 1.1 U_{H}$
Frequency range:
$50 / 60 \mathrm{~Hz}$
Nominal consumption:

BA 9054, MK 9054N:		
Nominal voltage	Voltage range	Frequency range
AC/DC $24 \ldots 80 \mathrm{~V}$	AC $18 \ldots 100 \mathrm{~V}$	$45 \ldots 400 \mathrm{~Hz} ; \mathrm{DC} 48 \% \mathrm{~W}$
	DC $18 \ldots 130 \mathrm{~V}$	$\mathrm{~W} \leq 5 \%$
AC/DC $80 \ldots 230 \mathrm{~V}$	AC $40 \ldots 265 \mathrm{~V}$	$45 \ldots 400 \mathrm{~Hz} ; \mathrm{DC} 48 \% \mathrm{~W}$
	DC $40 \ldots 300 \mathrm{~V}$	$\mathrm{~W} \leq 5 \%$

BA 9054		
Nominal voltage	Voltage range	Frequency range
DC 12 V	DC $10 \ldots 18 \mathrm{~V}$	battery voltage

Nominal consumption: $\quad 4 \mathrm{VA} ; 1.5 \mathrm{~W}$ at AC 230 V Rel. energized 1 W at DC 80 V Rel. energized

Output

Contacts

BA 9054:
MK 9054N:
Thermal current $I_{\text {th }}$
BA 9054: 2×5 A
MK 9054N: 2×4 A
Switching capacity
BA 9054
to AC 15:
NO contact:
NC contact:
NO contact

BA 9054, MK 9054N
to DC 13:
Electrical life
BA 9054
to AC 15 at $3 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}$:
MK 9054N:
to AC 15 at $3 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}$:
Short-circuit strength
max. fuse rating:
Mechanical life
BA 9054:
MK 9054N:

2 A / AC 230 V
IEC/EN 60 947-5-1
1 A / AC 230 V IEC/EN 60 947-5-1
1.5 A / AC 230 V

1 A / DC 24 V
IEC/EN 60 947-5-1
2 changeover contacts
2 changeover contacts

IEC/EN 60 947-5-1
IEC/EN 60 947-5-1
5×10^{5} switching cycles
10^{5} switching cycles
6 AgL
IEC/EN 60 947-5-1
50×10^{6} switching cycles
30×10^{6} switching cycles

Technical Data		UL-Data	
General Data		Auxiliary voltage $\mathbf{U}_{\mathrm{H}}(\mathbf{A} 1, \mathrm{~A} 2)$ BA 9054:	AC 24, 42, 48, 110, 115, 120 V
Operating mode:	Continuous operation	Thermal current I_{th} :	
Temperature range:	$-40 \ldots+60^{\circ} \mathrm{C}$	BA 9054:	2×5 A
Clearance and creepage		MK 9054N:	$2 \times 4 \mathrm{~A}$
distances		Clearance and creepage dista	ances
rated impulse voltage /		BA 9054, MK 9054N:	$4 \mathrm{kV} / 2 \quad$ IEC 60 664-1
pollution degree		HF irradiation	
BA 9054:	$6 \mathrm{kV} / 2$ IEC 20 664-1	BA 9054 (80 MHz ... 2.7 GHz)	$10 \mathrm{~V} / \mathrm{m}$ IEC/EN 61 000-4-3
MK 9054N	$4 \mathrm{kV} / 2 \quad$ IEC 60 664-1	Switching capacity:	Pilot duty B150
EMC tested according to railway standard EN 50155		Ambient temperature:	- $40 \ldots+60^{\circ} \mathrm{C}$
Electrostatic discharge:	8 kV (air) IEC/EN 61 000-4-2	Technical data that is not stated in the UL-Data, can be found in the technical data section.	
HF irradiation			
$80 \mathrm{MHz} \mathrm{...1} \mathrm{GHz:}$	$20 \mathrm{~V} / \mathrm{m}$ IEC/EN 61 000-4-3		
1 GHz ... 2.7 GHz :	$10 \mathrm{~V} / \mathrm{m}$ IEC/EN 61 000-4-3		
$\begin{array}{ll}\text { Fast transients: } & 4 \mathrm{kV} \\ \text { Surge voltages } & \end{array}$			
		CCC-Data	
between		Switching capacity to AC 15:	
between wire and ground:	4 kV IEC/EN 61 000-4-5		$\begin{aligned} & 1.5 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V} \\ & 1 \mathrm{~A} / \mathrm{DC} 24 \mathrm{~V} \end{aligned}$
Interference suppression:	Limit value class B EN 55011	to DC 13:	$1 \mathrm{~A} / \mathrm{DC} 24 \mathrm{~V}$ IEC/EN 60 947-5-1
Degree of protection			
Housing:	IP 40 IEC/EN 60529	Technical data that is not stated in the CCC-Data, can be found in the technical data section.	
Terminals:	IP 20 IEC/EN 60529		
Housing:	Thermoplastic with Vo behaviour according to UL subject 94		
Vibration resistance:	Amplitude 0.35 mm IEC/EN 60 068-2-6 frequency 10 ... 55 Hz	Standard Types	
Climate resistance:	40 / 060 / 04 IEC/EN 60 068-1		
Terminal designation:	EN 50005	BA 9054/010 AC $25 . . .250 \mathrm{~V}$	AC 230 V
Wire connection		Article number:	0053639
BA 9054:	$2 \times 2.5 \mathrm{~mm}^{2}$ solid or	- for Overcurrent monitoring	
	$2 \times 1.5 \mathrm{~mm}^{2}$ stranded wire with sleeve	- Measuring range:	AC $25 \ldots 250 \mathrm{~V}$
MK 9054N:		- Auxiliary voltage U_{H} :	AC 230 V
Screw terminals (integrated):		- Time delay t_{v} by $\mathrm{U}_{\text {an: }}$	0... 20 s
	$1 \times 4 \mathrm{~mm}^{2}$ solid or	- Width:	45 mm
	$1 \times 2.5 \mathrm{~mm}^{2}$ stranded ferruled (isolated) or $2 \times 1.5 \mathrm{~mm}^{2}$ stranded ferruled (isolated)	BA 9054/012 AC 25 ... 250 V	AC 230 V
	or $2 \times 2.5 \mathrm{~mm}^{2}$ solid	Article number:	0053711
Insulation of wires or sleeve length:	8 mm	- for Undercurrent monitoring - Measuring range:	AC $25 \ldots 250 \mathrm{~V}$
Plug in with screw terminals max. cross section		- Auxiliary voltage U_{H} : - Time delay t_{v} by U_{ab} :	AC 230 V 0 ... 20 s
for connection:	$1 \times 2.5 \mathrm{~mm}^{2}$ solid or	- Width:	45 mm
	$1 \times 2.5 \mathrm{~mm}^{2}$ stranded ferruled (isolated)	MK 9054N.12/010 AC $25 \ldots 250 \mathrm{~V}$ AC/DC $80 \ldots 230 \mathrm{~V}$ t. $0 \ldots 2 \mathrm{~s}_{\mathrm{a}} 0.1 \ldots 20 \mathrm{~s}$ Article number:	
Insulation of wires			
Plug in with cage clamp terminals max. cross section		- Measuring range: - Auxiliary voltage U_{H} :	AC $25 \ldots 250 \mathrm{~V}$ AC/DC 80 ... 230 V
for connection:	$1 \times 4 \mathrm{~mm}^{2}$ solid or	- Time delay $\mathrm{tv}_{\text {d }}$ by $\mathrm{Uan}_{\text {an }}$:	$\begin{aligned} & 0 \ldots 20 \mathrm{~s} \\ & 0.1 \ldots 20 \mathrm{~s} \end{aligned}$
	$1 \times 2.5 \mathrm{~mm}^{2}$ stranded ferruled (isolated)	- Width:	$22.5 \mathrm{~mm}$
min. cross section			
for connection:	$0.5 \mathrm{~mm}^{2}$		
Insulation of wires			
or sleeve length:	$12 \pm 0.5 \mathrm{~mm}$		
Wire fixing			
BA 9054:	Flat terminals with self-lifting clamping piece IEC/EN 60 999-1		
MK 9054N:	Plus-minus terminal screws M3.5 box terminals with wire protection or cage clamp terminals		
Mounting:	DIN-rail IEC/EN 60715		
Weight			
BA 9054:	AC-device: $\quad 280 \mathrm{~g}$ AC/DC-fdevice: 200 g		
MK 9054N:	150 g		
Dimensions			
Width x height x depth			
BA 9054:	$45 \times 75 \times 120 \mathrm{~mm}$		
MK 9054N:	$22.5 \times 90 \times 97 \mathrm{~mm}$		

Ordering example for variants

Options with Pluggable Terminal Blocks

Screw terminal (PS/plugin screw)

Cage clamp
(PC/plugin cage clamp)

Notes

Removing the terminal blocks with cage clamp terminals

1. The unit has to be disconnected.
2. Insert a screwdriver in the side recess of the front plate.
3. Turn the screwdriver to the right and left.
4. Please note that the terminal blocks have to be mounted on the belonging plug in terminations.

Accessories

Setting

Example:
Voltage relay BA 9054 / MK 9054N AC 25 ... 250 V
AC according to type plate:
i.e. the unit is adjusted to AC voltage
$25 \ldots 250 \mathrm{~V}=$ measuring range
Response value AC 150 V
Hysteresis AC 75 V

Settings:

upper potentiometer:

0.6	$(0.6 \times 250 \mathrm{~V}=150 \mathrm{~V})$
0.5	$(0.5 \times 150 \mathrm{~V}=75 \mathrm{~V})$

The AC-devices can also monitor DC current. The scale offset in this case is: $\bar{U}=0.9 \times U_{\text {eff. }}$

AC $25 \ldots 250 \mathrm{~V}$ is equivalent to $\mathrm{DC} 22.5 \ldots 225 \mathrm{~V}$
Response value DC 150 V
Hysteresis DC 75 V
Settings:
$\begin{array}{lll}\text { upper potentiometer: } & 0.66 & (0.66 \times 225 \mathrm{~V}=150 \mathrm{~V}) \\ \text { lower potentiometer: } & 0.5 & (0.5 \times 150 \mathrm{~V}=75 \mathrm{~V})\end{array}$
lower potentiometer: $\quad 0.5 \quad(0.5 \times 150 \mathrm{~V}=75 \mathrm{~V})$

Characteristics

Switching delay
The characteristic shows the switching delay depending on the values of $X_{\text {on }}-X_{\text {off }}$ when switching the current on or off. A slow current change reduces the delay.
$F=\frac{U \text { applied }}{U \text { setting }}$

