VARIMETER
Neutral Monitor
IL 9069, SL 9069

Circuit Diagram

IL 9069.12, SL 9069.12

- According to IEC/EN 60 255, DIN VDE 0435-303
- Detection of
- missing neutral in the system
- broken neutral on IL/SL 9069
- neutral exchanged against phase
- Detection of phase failure also with disconnected load
- For 3-phase systems
- De-energized on trip
- LED indicator for operation/state of output contacts
- Single phase connection possible
- Without auxiliary voltage
- 2 cangeover contacts
- Optionally with adjustable asymmetry detection and on delay
- Devices available in $\mathbf{2}$ enclosure version:

IL 9069: depth 59 mm with terminals at the bottom for installations systems and industrial distribution systems according to DIN 43880
SL 9069: depth 98 mm with terminals at the top for cabinets with mounting plate and cable duct

- Width 35 mm

Approval and Markings

C ϵ

Application

Neutral monitoring in 3-phase systems

In 3-phase systems with neutral often also single phase loads are connected between phase and neutral. If the neutral is missing in a system like this, unsymmetric voltages occur, that could damage single phase consumers, if the voltage rises to high. Also consumers can stop to work if the phaseneutral voltage gets too low. The IL 9069 detects this problem and can switch off the system immediately.

To monitor mobile systems that are connected via plug connectors. On mobile systems that are connected by a very long cable, voltage drop can cause a significant asymmetry also during normal operation. For this case we recommend the variant IL/SL 9069.12/500 with an adjustable asymmetry setting (approx. 5 ...15\%) and an additional response delay.

Function

All 3 phase voltages are measured between phase input L1, L2, L3 and the neutral N. If all 3 phases and the neutral are connected correctly and the asymmetry in good state, the green LED is on and the output relay is energized. If the neutral or one phase is missing or the neutral is exchanged with a phase or the asymmetry exceeds the setting value, the output relay de-energises immediately or after the adjusted time delay (with IL/SL 9069.12/500) and the green LED goes off. The time delay on IL/SL 9069.12/500 is only active when the voltage on terminals L3-N is at least $0,7 U_{N}$ as the unit is supplied from these terminals.

Indication

LED green: on when output relay activated
(contact 11-14 and 21-24 are closed)

Technical Data

Input

Nominal voltage $\mathrm{U}_{\mathrm{N}}:$	$3 / \mathrm{N} \mathrm{AC} 400 / 230 \mathrm{~V}$
Max. overload:	AC 440 V on all measuring inputs
Voltage range:	$0.7 \ldots 1.1 \mathrm{U}_{\mathrm{N}}$
Permissible asymmetry	
of the phase	
IL/SL 9069.12:	max. 5%
IL/SL 9069.12/500:	adjustable approx. $5 \ldots 15 \%$
Nominal consumption	approx. $6 \mathrm{VA}(\mathrm{L3-N})$
Nominal frequency:	$50 / 60 \mathrm{~Hz}$
Frequency range:	$45 \ldots 65 \mathrm{~Hz}$
Input current at $\mathrm{U}_{\mathrm{N}}:$	L1-N, L2-N: approx. 1.5 mA
	L3-N: approx. 25 mA
On delay	
IL/SL 9069.12:	approx. 100 ms
IL/SL 9069.12/500:	approx. $0.1 \ldots 20 \mathrm{~s}$, adjustable

Output

Contact

IL 9069.12, SL 9069.12:
Thermal current $\mathrm{I}_{\text {th }}$:
Switching capacity
according to AC 15:
NO contact:
NC contact:
Electrical life
to $A C 15$ at $1 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}$:
Short circuit strength
max. fuse:
Mechanical life:

2 changeover contacts
4 A

3 A / AC $230 \mathrm{~V} \quad$ IEC/EN 60 947-5$2 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}$ IEC/EN 60 947-5-1
$\geq 5 \times 10^{5}$ switch. cycl. IEC/EN 60 947-5-1
4 A gL
$\geq 30 \times 10^{6}$ switch. cycles

General Data

Operating mode:	Continuous operation	
Temperature range:	$-20 \ldots+60^{\circ} \mathrm{C}$	
Clearance and creepage distances		
rated rated impulse voltage voltage /		
pollution degree:	$4 \mathrm{kV} / 2$	IEC 60 664-1
EMC		
Electrostatic discharge:	8 kV (air)	IEC/EN 61 000-4-2
HF irradiation:	$10 \mathrm{~V} / \mathrm{m}$	IEC/EN 61 000-4-3
Fast transients:	2 kV	IEC/EN 61 000-4-4
Surge voltages		
between		
wires for power supply:	2 kV	IEC/EN 61 000-4-5
between wire and ground:	2 kV	IEC/EN 61 000-4-5
Interference suppression:	Limit value class B	EN 55011
Degree of protection		
Housing:	IP 40	IEC/EN 60529
Terminals:	IP 20	IEC/EN 60529
Housing:	Thermoplastic with Vo behaviour according to UL subject 94	
Vibration resistance:	Amplitude 0.35 mm ,	
Climate resistance:	$20 / 060$ / 04	IEC/EN 60 068-1
Terminal designation:	EN 50005	
Wire connection:	$2 \times 2.5 \mathrm{~mm}^{2}$ solid or	
	$2 \times 1.5 \mathrm{~mm}^{2}$ stranded ferruled	
	DIN 46 228-1/-2/-3/-4	
Wire fixing:	Flat terminals with self-lifting	
	clamping piece	IEC/EN 60 999-1
Mounting:	DIN rail	IEC/EN 60715
Weight		
IL 9069:	110 g	
SL 9069:	137 g	

Dimensions

Width x height x depth

IL 9069:	$35 \times 90 \times 59 \mathrm{~mm}$
SL 9069:	$35 \times 90 \times 98 \mathrm{~mm}$

$0 \times 59 \mathrm{~mm}$
$35 \times 90 \times 98 \mathrm{~mm}$

Standard Types

$\begin{array}{ll}\text { IL } 9069.12,3 / \mathrm{N} \mathrm{AC} 400 / 230 \mathrm{~V}, 50 / 60 \mathrm{~Hz} \\ \text { Article number: } & 0048730\end{array}$ stock item

- Output: 2 changeover contacts
- Nominal voltage U_{N} : $3 / \mathrm{N}$ AC 400 / 230 V
- Width: 35 mm

SL 9069.12, 3/N AC 400 / 230 V, $50 / 60$ Hz
Article number: 0054750

- Output: 2 changeover contacts
- Nominal voltage $U_{N}: \quad 3 / \mathrm{N}$ AC $400 / 230 \mathrm{~V}$
- Width: 35 mm

Variant

IL/SL 9069.12/500: with adjustable asymmetry detection and adjustable on delay

Order example for variant

SL 9069:
\qquad

