

Function Diagram

- According to IEC/EN 61 557-8
- For single- and 3-phase AC-voltage systems
- Adjustable response value R_{AN} from 10 ... $80 \mathrm{k} \Omega$
- Without auxiliary supply
- Closed circuit operation
- Programmable for:
- manual reset (bridge LT1-LT2)
- automatic reset (without bridge)
- External reset button on LT1-LT2
- Test button to check the function of the device
- External test button can be connected to PT1-PT2
- 1 changeover contact
- Width 45 mm

Approvals and Markings

C

Applications

Monitoring of the resistance to earth in ungrounded single- and 3-phasevoltage systems.

Notes

When monitoring 3-phase IT systems it is sufficient to connect the insulation monitor only to one phase. The 3 -phases have a low resistive connection (approx. $3-5 \Omega$) via the feeding transformer. So failures that occure in the non-connected phases will also be detected.
In one voltage system only one Insulation monitor must be connected. This has to be observed when coupling voltage system.

Technical Data

Measuring Circuit

Nominal voltage U_{N} :

Voltage range:

Frequency range:
Response value $R_{A N}$:
Setting R_{AN} :
Internal test resistor:
Internal AC resistance:
Internal DC resistance:
Measuring voltage:
Max. measuring current
($\mathrm{RE}=0$):
Max. permissible noise
DC voltage:
Operate delay
at $\mathrm{R}_{\mathrm{AN}}=50 \mathrm{k} \Omega, \mathrm{CE}=1 \mu \mathrm{~F}$
R_{E} from ∞ to $0.9 \mathrm{R}_{A N}$:
$\mathrm{R}_{\mathrm{E}}^{\mathrm{E}}$ from ∞ to $0 \mathrm{k} \Omega$:
Hysteresis
at $\mathrm{R}_{\mathrm{AN}}=50 \mathrm{k} \Omega$:
Measuring error
at $\mathrm{R}_{\mathrm{AN}}=50 \mathrm{k} \Omega$:

Nominal consumption:

Phase failure bridging:

AC 24, 42, 110, 127, 230, 400, 415
500 V
0.8 ... $1.1 U_{\mathrm{N}}$

45 ... 400 Hz
10 ... $80 \mathrm{k} \Omega$
infinite variable with screwdriver
equivalent to earth resistance
of $<10 \mathrm{k} \Omega$
$>200 \mathrm{k} \Omega$
$>200 \mathrm{k} \Omega$
DC 18 V
$<0.1 \mathrm{~mA}$
DC 242 V
<4.2 s
approx. 2 s
approx. 50 \%
< 15 \%
ambient temperature $-5 \ldots 50^{\circ} \mathrm{C}$, within the permitted voltage range approx. 2.5 VA
$>25 \mathrm{~ms}$

Technical Data

Output

Contacts:

Max. switching voltage

Thermal current $\mathrm{I}_{\text {th }}$:
Switching capacity
to AC 15:
Short circuit strength max. fuse rating:

General Data

Operating mode:
Permissible ambient and stocking temperature: Clearance and creepage distances
rated impulse voltage /
pollution degree:
EMC
Electrostatic discharge:
Fast transients
Surge voltages
between
wires for power supply: between wire and ground: Interference suppression:
Degree of protection Housing:
Terminals:
Housing:
Vibration resistance:
Climate resistance: Terminal designation: Wire connection:

Wire fixing:
Mounting:
Weight:

1 changeover contact
AC 400 V
5 A
5 A / AC 230 V
IEC/EN 60 947-5-1
5 A gL
IEC/EN 60 947-5-1

Continuous operation

$-20 \ldots+60^{\circ} \mathrm{C} /-25 \ldots+70^{\circ} \mathrm{C}$

4 kV / 2

8 kV (air)
2 kV

4 kV
Limit value class B
IEC/EN 61 000-4-5
IEC/EN 61 000-4-5
IP 40 IEC/EN 60529

IP 20
IEC/EN 60529
Thermoplastic with V0 behaviour
according to UL subject 94
Amplitude 0.35 mm
frequency 10...55Hz IEC/EN 60 068-2-6
20 / 060 / 04
IEC/EN 60 068-1
EN 50005
$2 \times 2.5 \mathrm{~mm}^{2}$ solid or
$2 \times 1.5 \mathrm{~mm}^{2}$ stranded wire
DIN 46 228-1/-2/-3/-4
Flat terminals with self-lifting
clamping piece IEC/EN 60 999-1
DIN rail
220 g

Dimensions
Width x height x depth:
$45 \times 77 \times 115 \mathrm{~mm}$

Ordering example for variant

Connection Example

Connection Example AI 897
A1/A2: $U_{N}=U_{H}$
Bridge LT1/LT2: manual reset
without Bridge LT1/LT2: automatic rese

Connection Example AI 897.07
A1/A2: $U_{N}=U_{H}$
Bridge LT1/LT2: automatic reset
without Bridge LT1/LT2: manual reset

