

BA 9053

Circuit Diagrams

BA 9053

MK 9053N

MK 9053N

Connection Terminals
Terminal designation Signal designation A1, A2 Auxiliary voltage i, k Current measuring input $11,12,14$ 1st changeover contact $21,22,24$ 2nd changeover contact

Your Advantages

- Preventive maintenance
- For better productivity
- Quicker fault locating
- Precise and reliable

Features

- According to IEC/EN 60 255, DIN VDE 0435-303, IEC/EN 60 947-1
- to: monitor DC and AC
- BA 9053 with measuring ranges from 2 mA to 25 A
- BA 9053 optionally with 3 measuring ranges 0.1 up to 25 A
- MK 9053N with measuring ranges from 2 mA up to 10 A
- High overload possible
- Input frequency up to 5 kHz
- Galvanic separation between auxiliary circuit - measuring ciruit
- Auxiliary supply AC/DC; BA 9053 with AC
- BA 9053 optionally with start-up delay (MK = standard)
- with time delay, up to max. 100 sec
- BA 9053 optionally with safe separation to IEC/EN 61140
- As option with manual reset
- MK 9053N optionally with remote potentiometer
- LED indicators for operation and contact position
- MK 9053N as option with pluggable terminal blocks for easy exchange of devices
- with screw terminals
- or with cage clamp terminals
- Width BA 9053: 45 mm Width MK 9053N: 22.5 mm

Approvals and Markings

* see variants

Applications

Monitoring current in AC or DC systems

Function

The relays measure the arithmetic mean value of the rectified measuring current. The AC units are adjusted to the r.m.s value. They have settings for response value and hysteresis. The units work as overcurrent relays but can also be used for undercurrent detection. The hysteresis is dependent on the response value.

2 time delays are possible in different variants:
The start up delay t_{a} operates only when connecting the auxiliary supply. It disables tripping e.g. caused by an increased starting current of a motor. The response delay t_{v} is active after exceeding a response value. On overcurrent relays the delay is active when the current goes over the tripping value, on undercurrent relays when the current drops below the hysteresis value.

Indicators

$\begin{array}{ll}\text { green LED: } & \text { on, when auxiliary supply connected } \\ \text { yellow LED: } & \text { on, when output relay acitvated }\end{array}$

Function Diagram without Start-up Delay

M6779_ \dagger

Function Diagram with Start-up Delay

On model BA 9053/6_ _ with manual reset the contacts remain in the fault state after detecting a fault or after to has elapsed. The contacts are reset by disconnecting the supply voltage.

Technical Data

Input (i, k)

BA 9053 for $A C$ and DC				
Measuring range*)		internal resistance	max. perm. cont.	max. permiss. current 3 s On, 100 s Off
AC	DC		Device mounted without distance	
$2-20 \mathrm{~mA}$	$1.8-18 \mathrm{~mA}$	1.5Ω	0.7 A	1 A
20-200 mA	18-180 mA	0.15Ω	2 A	4 A
30-300 mA	27-270 mA	0.1 析	2.5 A	8 A
50-500 mA	45-450 mA	0.1Ω	2.5 A	8 A
80-800 mA	72-720 mA	$40 \mathrm{~m} \Omega$	4 A	12 A
0.1- 1 A	0.09- 0.9 A	$30 \mathrm{~m} \Omega$	4 A	12 A
0.5- 5 A	0.45-4.5 A	$6 \mathrm{~m} \Omega$	10 A	30 A
1-10 A	0.9-9 A	$3 \mathrm{~m} \Omega$	20 A	40 A
1.5-15 A	1.35-13.5 A	$3 \mathrm{~m} \Omega$	25 A	40 A
2-20 A	1.8-18 A	$3 \mathrm{~m} \Omega$	25 A	40 A
2.5-25 A	2.25-22.5 A	$3 \mathrm{~m} \Omega$	25 A	40 A

* DC or AC current $50 \ldots 5000 \mathrm{~Hz}$
(other frequency ranges of $10 \ldots 5000 \mathrm{~Hz}$, e.g. $16 \frac{2}{3} \mathrm{~Hz}$ on request)

BA 9053/4__ with 3 measuring ranges:			
Range:	Terminals i1/k	Terminals i2/k	Terminals i3/k
$\begin{aligned} & \text { AC } 20 \mathrm{~mA} / \\ & 200 \mathrm{~mA} / 1 \mathrm{~A}: \end{aligned}$	AC 2.0 ... 20 mA	AC $20 . . .200 \mathrm{~mA}$	AC 0.1... 1 A
	DC 1.8 ... 18 mA	DC $18 \ldots 180 \mathrm{~mA}$	DC $0.09 \ldots 0.9 \mathrm{~A}$
AC 1/5/10A:	AC 0.1... 1 A	AC $0.5 \ldots 5 \mathrm{~A}$	AC 1.0 ... 10 A
	DC $0.09 \ldots 0.9 \mathrm{~A}$	DC 0.45 ... 4.5 A	DC 0.9 ... 9 A
AC 5 / 10 / 25A:	AC $0.5 \ldots 5 \mathrm{~A}$	AC 1.0 ... 10 A	AC 2.5 ... 25 A
	DC 0.45 ... 4.5 A	DC 0.9 ... 9 A	DC 2.25 ... 22.5 A

Technical Data

Setting Ranges

Setting

Response value: infinite variable $0.1 \mathrm{I}_{\mathrm{N}} \ldots 1 \mathrm{I}_{\mathrm{N}}$
Hysteresis
at AC:
at DC:
Accuracy:
Response value at
Potentiometer right stop (max): $0 \ldots+8 \%$
Potentiometer left stop (min): $-10 \ldots+8 \%$
Repeat accuracy: $\leq \pm 0.5 \%$
Recovery time
at devices with manual reset
(Reset by braking
of the auxiliary voltage)
BA 9053/6_ _; MK 9053N/6_ _: $\leq 1 \mathrm{~s}$
(dependent to function and auxiliary voltage) infinite variable at logarythmic scale from $0 \ldots 20 \mathrm{~s}, 0 \ldots 30 \mathrm{~s}, 0 \ldots 60 \mathrm{~s}, 0 \ldots 100 \mathrm{~s}$ setting $0 \mathrm{~s}=$ without time delay
$1 \ldots 20 \mathrm{~s} ; 1 \ldots 60 \mathrm{~s} ; 1 \ldots 100 \mathrm{~s}$, adjustable on logarithmic scale. t_{a} is started when the supply voltage is connected. During elapse of time the output contact is in good state $0.1 \ldots 20 \mathrm{~s} ; 0.1 \ldots 60 \mathrm{~s} ; 0.1 \ldots 100 \mathrm{~s}$
MK 9053N:

Auxiliary Circuit BA 9053 and MK 9053N

Auxiliary voltage $\mathrm{U}_{\mathrm{H}}(\mathrm{A} 1, \mathrm{~A} 2)$
BA 9053, Nominal voltages: AC 24, 42, 110, 127, 230, 400 V
Voltage range:
Nominal frequency:
Frequency range: $0.8 \ldots 1.1 U_{H}$
$50 / 60 \mathrm{~Hz}$
± 5 \%
Nominal consumption: 2.5 VA

BA 9053:		
Nominal voltage	Voltage range	Frequency range
AC/DC $24 . . .80 \mathrm{~V}$	AC $18 . . .100 \mathrm{~V}$	$45 . . .400 \mathrm{~Hz}$; DC 48 \% W
	DC $18 \ldots 130 \mathrm{~V}$	W ≤ 5 \%
AC/DC $80 \ldots 230 \mathrm{~V}$	AC $40 \ldots 265 \mathrm{~V}$	$45 . . .400 \mathrm{~Hz}$; DC 48 \% W
	DC $40 \ldots 300 \mathrm{~V}$	W ≤ 5 \%
DC 12 V	DC $10 \ldots 18 \mathrm{~V}$	battery voltage

MK 9053N:		
Nominal voltage	Voltage range	Frequency range
$\mathrm{AC} / \mathrm{DC} 24 \ldots 80 \mathrm{~V}$	AC $18 \ldots 100 \mathrm{~V}$	$45 \ldots 400 \mathrm{~Hz} ; \mathrm{DC} 48 \% \mathrm{~W}$
	DC $18 \ldots 130 \mathrm{~V}$	$\mathrm{~W} \leq 5 \%$
$\mathrm{AC} / \mathrm{DC} 80 \ldots 230 \mathrm{~V}$	$\mathrm{AC} 60 \ldots 265 \mathrm{~V}$	$45 \ldots 400 \mathrm{~Hz} ; \mathrm{DC} 48 \% \mathrm{~W}$
	DC $60 \ldots 300 \mathrm{~V}$	$\mathrm{~W} \leq 5 \%$

Nominal consumption:

4 VA; 1.5 W at AC 230 V Rel. energized 1 W at DC 80 V Rel. energized

UL-Data

Auxiliary voltage $\mathbf{U}_{\mathrm{H}}(\mathbf{A} 1, \mathrm{~A} 2)$
BA 9053:
AC 24, 42, 48, 110, 115, 120 V
Thermal current $I_{\text {th }}$:
BA 9053: 2×5 A
MK 9053N: $\quad 2 \times 4$ A
Clearance and creepage distances
BA 9053, MK 9053N: 4 kV / 2
HF irradiation
BA 9053 ($80 \mathrm{MHz} \ldots 2.7 \mathrm{GHz}$) $10 \mathrm{~V} / \mathrm{m} \quad$ IEC/EN $61000-4-3$

Switching capacity:
Pilot duty B150
Ambient temperature:

IEC 60 664-1

Technical data that is not stated in the UL-Data, can be found in the technical data section.

CCC-Data

Switching capacity

to AC 15:	$1.5 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}$	IEC/EN $60947-5-1$
to DC 13:	$1 \mathrm{~A} / \mathrm{DC} 24 \mathrm{~V}$	IEC/EN $60947-5-1$

Technical data that is not stated in the CCC-Data, can be found in the technical data section.

Standard Types

BA 9053/010 AC 0.5 ... 5 A AC 230 V
Article number:

- for Overcurrent monitoring
- Measuring range

AC $0.5 \ldots 5$ A

- Auxiliary voltage U_{H} : AC 230 V
- Time delay by I_{an} : $0 \ldots 20 \mathrm{~s}$
- Width: 45 mm

BA 9053/012 AC $0.5 \ldots 5$ A AC 230 V
Article number:
0053192

- for Undercurrent monitoring
- Measuring range

AC 0.5 ... 5 A

- Auxiliary voltage U_{H} : AC 230 V
- Time delay by I_{ab} : $0 \ldots 20 \mathrm{~s}$
- Width: 45 mm

MK 9053N.12/010 AC 0.5 ...5A AC/DC $80 \ldots 230$ V t 0 ... 20 s ta $0.1 \ldots 20 \mathrm{~s}$
Article number:
0063176

- for Overcurrent monitoring
- Measuring range::

AC 0.5 ... 5 A

- Auxiliary voltage U_{H} :

AC/DC $80 \ldots 230 \mathrm{~V}$

- Time delay by t_{v} :

0 ... 20 s

- Start up delay t_{a} :
$0.1 \ldots 20 \mathrm{~s}$
- Width:
22.5 mm

Ordering example for variants

Options with Pluggable Terminal Blocks

Screw terminal (PS/plugin screw)

Cage clamp (PC/plugin cage clamp)

Notes

Removing the terminal blocks with cage clamp terminals

1. The unit has to be disconnected.
2. Insert a screwdriver in the side recess of the front plate.
3. Turn the screwdriver to the right and left.
4. Please note that the terminal blocks have to be mounted on the belonging plug in terminations.

Accessories

Setting

Example:
Current relay BA 9053 / MK 9053N AC 0.5 ... 5 A
AC according to type plate:
i.e. the unit is calibrated for AC
$0.5 \ldots 5 \mathrm{~A}=$ measuring range
Response value AC 3 A
Hysteresis AC 1.5 A
Settings:
upper potentiometer: $\quad 0.6 \quad(0.6 \times 5 \mathrm{~A}=3 \mathrm{~A})$
lower potentiometer:

$$
0.5 \quad(0.5 \times 3 \mathrm{~A}=1.5 \mathrm{~A})
$$

The AC - devices can also monitor DC current. The scale offset in this case is: $\bar{T}=0.90 \times \mathrm{I}_{\text {eff }}$

AC $0.5 \ldots 5 \mathrm{~A}$ is equivalent to $\mathrm{DC} 0.45 \ldots 4.5 \mathrm{~A}$
Response value DC 3 A
Hysteresis DC 1.5 A

Settings:
upper potentiometer: $\quad 0.66 \quad(0.66 \times 4.5 \mathrm{~A}=3 \mathrm{~A})$
lower potentiometer: $\quad 0.5 \quad(0.5 \times 3 \mathrm{~A}=1.5 \mathrm{~A})$

Characteristics

Switching delay
The characteristic shows the switching delay depending on the values of $X_{\text {on }}-X_{\text {off }}$ when switching the current on or off. A slow current change reduces the delay
$F=\frac{I \text { applied }}{I \text { setting }}$

