

Function Diagram

- According to
- Performance Level (PL) e and category 4 to EN ISO 13849-1: 2008
- SIL Claimed Level (SIL CL) 3 to IEC/EN 62061
- Safety Integrity Level (SIL 3) to IEC/EN 61508 and IEC/EN 61511
- Output: 3 NO or 2 NO, 1 NC instantaneous contacts and 3 NO release delayed contacts
- Single and 2-channel operation
- Line fault detection on On-button,
when On-button is connected to S33-S34
- Manual restart with button on S33-S34 or automatic restart with bridge between S13-S14
- With or without cross fault monitoring in the E-stop loop
- LED indication for supply, channel $1 / 2$ and release delayed contacts
- Removable terminal strips
- Wire connection: also $2 \times 1.5 \mathrm{~mm}^{2}$ stranded ferruled (isolated), DIN 46 228-1/-2/-3/-4 or
$2 \times 2.5 \mathrm{~mm}^{2}$ stranded ferruled DIN 46 228-1/-2/-3
- Width

BH 5928: 45 mm
BI 5928: 67.5 mm

Approvals and Marking

CE $\underbrace{\text { TUV }}_{\text {SUV }}$

* see variants

Applications

Protection of people and machines

- Emergency stop circuits on machines,
stop category 1 can be realised
- Monitoring of safety gates

Indication

LED power:
LEDs K1, K2:
on, when supply connected
on, when relay K 1 and K 2 resp. K1, and K2 energized

Block Diagram

BH 5928.47

BH 5928.92

BH 5928.91

BH 5928.93

Connection Terminals
Terminal designation Signal designation A1(+) + / L A2 (-) $-/ \mathrm{N}$ S12, S14, S22, S31, S32, S34, Y39 Inputs S11, S13, S21, S33, Y40 Outputs $13,14,23,24,33,34$ Positive driven NO contacts for release circuit $37,38,47,48,57,58,67,68$ NO contacts, delay $31,32,41,42$ Positive guided indicator output

Notes

To select automatic restart terminals S13-S14 must be bridged, S33-S34 must be opened. Open terminals S13-S14 select manual restart, the Onbutton must then be connected to S33-S34.
Line fault detection on On-button:
The line fault detection is only active when the time delayed relais $\mathrm{K} 1_{\mathrm{t}}$ and K_{t} have released and then S12 (channel A) and S32 (channel B) are switched simultaneously. If the On-button is closed before S12, S31, S32 is connected to voltage (also when line fault across On-button), the output contacts will not close. The unit will not restart before the time delay is finished.
A line fault across the On-button which occurred after activation of the relay, will be detected with the next activation and the output contacts will not close. If a line fault occurs after the voltage has been connected to S12, S31, S32, the unit will be activated because this line fault is similar to the normal On-function.
The unit can be operated with single channel and 2-channel operation with cross fault monitoring. For connection please refer to application examples.

The gold plated contacts of the BH 5928 mean that this module is also suitable for switching small loads of $1 \mathrm{mVA}-7 \mathrm{VA}, 1 \mathrm{~mW}-7 \mathrm{~W}$ in the range 0.1-60 V, 1-300 mA. The contacts also permit the maximum switching current. However since the gold plating will be burnt off at this current level, the device is no longer suitable for switching small loads after this.
The terminal S21 permits the operation of the device in IT-systems with insulation monitoring, serves as a reference point for testing the control voltage and is used to connect the E-stop loop when cross fault monitoring is selected.
Connecting the terminal S21 to the protective ground bridges the internal short-circuit protection of Line A2(-). The short-circuit protection of line A1(+) remains active.

ATTENTION - AUTOMATIC START!

According to IEC/EN 60 204-1 part 9.2.5.4.2 it is not allowed to restart automatically after emergency stop. Therefore the machine control has to disable the automatic start after emergency stop.

Y39-Y40 must be closed to have timed outputs. By opening the bridge between Y 39 and Y40 the time delay can be interrupted immediately. Without bridge the contacts switch without delay.
The time setting has to be sealed by the user after test.

Technical Data

Input

Nominal voltage \mathbf{U}_{N} :
BH 5928:
BH 5928.92/900,
BI 5928.47/100:
Voltage range:
at 10% residual ripple:
at 48% residual ripple:
Nominal consumption:
Nominal frequency:
Min. Off-time:
Control voltage on S11:
Control current over
S12, S32:
Min. voltage on
S12, S32:
Short-circuit protection:
Overvoltage protection:

Output

Contacts

BH 5928.47, BI 5928.47/100:
BH 5928.91:
BH 5928.92
BH 5928.93:

DC 24 V , AC/DC 24 V
DC 24 V
DC AC/DC
$0.9 \ldots 1.1 U_{N} \quad 0.95 \ldots 1.1 U_{N}$ $0.8 \ldots 1.1 U_{N} \quad 0.8 \quad \ldots 1.1 U_{N}^{N}$
AC approx. 6.0 VA
DC approx. 3.5 W
$50 / 60 \mathrm{~Hz}$
1 s
DC 23 V at U_{N}
40 mA at U_{N} each
DC 21 V when relay activated Internal PTC
Internal VDR

ATTENTION! The NC contacts 31-32 or 41-42 can only be used for monitoring.

Operate delay typ. at \mathbf{U}_{N} :

Manual start:
40 ms
Automatic start:
500 ms
Release delay typ. at U_{N} :
Disconnecting the supply:
Disconnecting
S12, S22, S31 and S32:
Time delay tv
(release delayed):

Repeat accuracy:

Contact type:
Nominal output voltage:
Max switching current:
Switching of low loads:
(Contact $5 \mu \mathrm{Au}$)
Thermal current I_{tn} :
in 1 contact path:
Switching capacity
to AC 15
NO contact:
NC contact:
to DC 13
NO contact:
NC contact:
BH 5928.47
NO contact 57/58:
to DC 13
NO contact:
NC contact:
Electrical life
to AC 15 at $2 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}$:
Permissible operating
frequency:
Short circuit strength
max. fuse rating:
Mechanical life:

40 ms

15 ms

Auxilary supply must be connected for time delay
Time ranges:

0.1	\ldots	1 s	3.0	\ldots	30 s
0.3	\ldots	3 s	6.0	\ldots	60 s
0.5	\ldots	5 s	30	\ldots	300 s
1.0	\ldots	10 s			

Other ranges or values on request
Fixed values: $1 \mathrm{~s}, 3 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}, 300 \mathrm{~s}$
$\pm 1 \%$ of setting value
forcibly guided
AC 250 V
DC: see limit curve for arc-free operation DC: see limit curve for arc-free operation $\geq 100 \mathrm{mV}$
$\geq 1 \mathrm{~mA}$
max. 5 A
(see quadratic total current limit curve)

3 A / AC 230 V
IEC/EN 60 947-5-1
1 A / AC 230 V
IEC/EN 60 947-5-1
A / DC
IEC/EN 60 947-5-1
1 A / DC 24 V
IEC/EN 60 947-5-1

2 A / DC 24 V IEC/EN 60 947-5-1
$5 \mathrm{~A} / 24 \mathrm{~V}$ at 0.1 Hz
$5 \mathrm{~A} / 24 \mathrm{~V}$ at 0.1 Hz
10^{5} switching cycles IEC/EN 60 947-5-1
max. 1200 switching cycles / h with manual restart and short release delay time

6 A gL
10×10^{6} switching cycles

Technical Data

General Data

Operating mode: Temperature range operation: storage : altitude:
Clearance and creepage distances
rated impuls voltage / pollution degree:
EMC
Electrostatic discharge:
HF irradiation:
Fast transients:
Surge voltages
between
wires for power supply:
between wire and ground:
HF-line-conducted:
Interference suppression:
Degree of protection:
Housing:
Vibration resistance:
Climate resistance: Terminal designation: Wire connection:

Continuous operation
$-15 \ldots+55^{\circ} \mathrm{C}$
$-25 \ldots+85^{\circ} \mathrm{C}$
<2.000 m

4 kV / 2 (basis insulation) IEC 60 664-1

8 kV (air)	IEC/EN 61 000-4-2
$10 \mathrm{~V} / \mathrm{m}$	IEC/EN 61 000-4-3

kV

1 kV
IEC/EN 61 000-4-5
10 V
Limit value class B
Housing: IP 40
Terminals: IP 20
IEC/EN 61 000-4-2
IEC/EN 61 000-4-3
IEC/EN 61 000-4-4

Thermoplastic with V0 behaviour
according to UL subject 94
Amplitude 0.35 mm IEC/EN 60 068-2-6 frequency 10 ... 55 Hz
15 / 055 / 04
IEC/EN 60 068-1
EN 50005
$1 \times 4 \mathrm{~mm}^{2}$ solid or
$1 \times 2.5 \mathrm{~mm}^{2}$ stranded ferruled (isolated) or
$2 \times 1.5 \mathrm{~mm}^{2}$ stranded ferruled (isolated)
DIN 46 228-1/-2/-3/-4 or
$2 \times 2.5 \mathrm{~mm}^{2}$ stranded ferruled
DIN 46 228-1/-2/-3
Box terminal with wire protection
removable terminal strips
DIN rail IEC/EN 60715
Mounting:
Weight:
BH 5928:
BI 5928.47/100:

Dimensions

Width \mathbf{x} height x depth:
BH 5928:
$45 \times 84 \times 121 \mathrm{~mm}$
$67.5 \times 84 \times 121 \mathrm{~mm}$
Safety Related Data (only instantaneous contacts)

Values according to EN ISO 13849-1:

Category:	4
PL:	e
MTTF $_{\mathrm{d}}:$	240.5
DC 2 DC	avg
$\mathrm{d}_{\text {op }}:$	99.0
$\mathrm{~h}_{\text {op }}:$	365
$\mathrm{t}_{\text {zykus }}:$	24
	3600
	$\hat{=1}$

Values according to IEC/EN 62061 / IEC/EN 61508 / IEC/EN 61511:

SIL CL:	3	IEC/EN 62061
SIL:	3	IEC/EN 61508 /
		IEC/EN 61511
HFT:	1	
DC / DC	avg:	99.0
SFF:	99.7	$\%$
PFH $_{\text {D }}:$	$2.05 \mathrm{E}-10$	$\mathrm{~h}^{-1}$
PFD:	$1.75 \mathrm{E}-05$	
$\mathrm{~T}_{1}:$	20	a (year)

[^0]
Technical Data

Safety Related Data (only delayed contacts)
Values according to EN ISO 13849-1:

Category:	3	
PL:	d	
MTTF $_{\mathrm{d}}:$	217,7	a (year)
DC / DC	avg:	99.0
$\mathrm{~d}_{\text {op }}:$	365	\%
$\mathrm{h}_{\text {op }}:$	24	d/a (days/year)
$\mathrm{t}_{\text {Zyklus }}:$	3600	h/d (hours/day)
	$\hat{=1} 1$	s/Zyklus
		/h (hour)

Values according to IEC/EN 62061 / IEC/EN 61508 / IEC/EN 61511:		
SIL CL:	2	IEC/EN 62061
SIL:	2	IEC/EN 61508 /
		IEC/EN 61511
HFT:	1	
DC / DC		
SFF:	99.0	$\%$
PFH $_{\text {avg }}:$	99.7	$\%$
PFD: $_{T_{1}:}^{2.28 E-10}$	$\mathrm{~h}^{-1}$	
	$1.95 \mathrm{E}-05$	
	20	a (year)

*) HFT = Hardware-Failure Tolerance
The values stated above are valid for the standard type.
Safety data for other variants are available on request.
The safety relevant data of the complete system has to be
determined by the manufacturer of the system.

UL-Data

The safety functions were not evaluated by UL. Listing is accomplished according to requirements of Standard UL 508, "general use applications"

Nominal voltage U_{N} BH 5928:

Ambient temperature:
Switching capacity:
Ambient temperature $25^{\circ} \mathrm{C}$: Pilot duty B300
5A 250Vac G.P.
5A 24Vdc
Pilot duty B300
0,5A 250Vac G.P. $0,5 \mathrm{~A} 24 \mathrm{Vdc}$
$60^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}$ copper conductors only AWG 20-12 Sol Torque 0.8 Nm AWG 20-14 Str Torque 0.8 Nm

Technical data that is not stated in the UL-Data, can be found in the technical data section.

CCC-Data	
Thermal current $\mathrm{I}_{\mathrm{th}}:$	max. 4 A (see quadratic total current limit curve)
Switching capacity to DC 13	
BH5928.47 $1 \mathrm{~A} / \mathrm{DC} 24 \mathrm{~V}$ IEC/EN 60 947-5-1 NO contact 57/58:	

Technical data that is not stated in the CCC-Data, can be found in the technical data section.

Standard Type

BH 5928.93 DC 24 V 0.5 ... 5 s
Article number: 0050369

- Output:
- Nominal voltage U_{N} :
- Time delay tv:
- Width:

3 NO contacts instantaneous and 3 NO contacts release delayed DC 24 V
$0.5 \ldots 5 \mathrm{~s}$
45 mm

Variants

BH 5928._ _ _ _ / 61 :
BH 5928._ _/001:

BH 5928._ _/900:

BI 5928.47/100:
with UL approval
with fix time delay
fixed times: $1 \mathrm{~s}, 3 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}, 300 \mathrm{~s}$
other times on request
with adjustable time delay suitable for light curtains and reed contacts switches with adjustable time delay tolerates voltage drop up to 6 V in e-stop circuit

Ordering example for variants:

$\frac{50 / 60 \mathrm{~Hz}}{\frac{1}{d}} \frac{1 \ldots 10 \mathrm{~s}}{\mathrm{n}}$
0.3
0.5
$\begin{array}{llll}.5 & \ldots & 5 & s \\ & \ldots & 10 & s\end{array}$
30
... 300 s
for fixed time end of scale value, other ranges on request
Nominal frequency
Nominal voltage
Variant, if required
Contacts
$.47=3$ NO contacts,
1 NC contact instantaneous and
1 NO contact release delayed
$.91=2 \mathrm{NO}$ contacts instantaneous and 2 NO contacts release delayed (only at BH 5928)
$.92=2$ NO contacts,
1 NC contact instantaneous and 3 NO contacts release delayed
$.93=3$ NO contacts instantaneous and 3 NO contacts release delayed
H: width 45 mm
I: width 67.5 mm

Characteristics

safe breaking, no continuous arcing,
max. 1 switching cycle/s
Arc limit curve for resistive load (instantaneous contact)

safe switch-off, no standing arc
arc max. 1 switching cycle / s

Arc limit curve for resistive load (delayed contact)

Max. current at $55^{\circ} \mathrm{C}$ over 3 contact paths $=0,5 \mathrm{~A} \widehat{=0,5^{2} \times 6=1,5 \mathrm{~A}^{2}}$
Quadratic total current limit curve

Application Examples

Single channel emergency stop circuit. This circuit does not have any redundancy in the emergency-stop control circuit Suited up to SIL2, Performance Level d, Cat. 3

2-channel emergency stop circuit without cross fault monitoring autostart and interruption of time by S1
Suited up to SIL3, Performance Level e, Cat. 4

Contact reinforcement by external contactors controlled by one contact path. S33-S34 must be opened
Suited up to SIL3, Performance Level e, Cat 4, if the external contactors are in the same cabinet and the wiring is short circuit and crossfault prove.

Contact reinforcement by external contactors, 2 -channel controlled. The output contacts can be reinforced by external contactors with forcibly guided contacts for switching currents $>5 \mathrm{~A}$.
Functioning of the external contactors is monitored by looping the NC contacts into the closing circuit (terminals S13-S14 or S33-S34) Suited up to SIL3, Performance Level e, Cat. 4

2-channel emergency stop circuit with cross fault detection Suited up to SIL3, Performance Level e, Cat. 4

2-channel safety gate monitoring
Suited up to SIL3, Performance Level e, Cat. 4

[^0]: HFT = Hardware-Failure Tolerance

