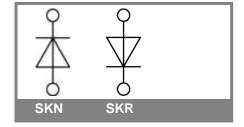

SKN 130

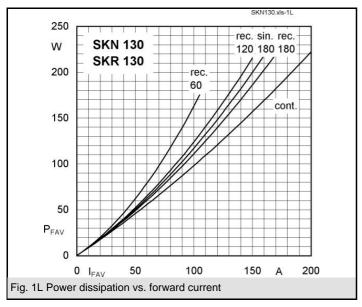
Stud Diode

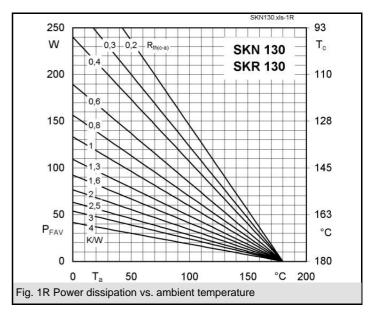
Rectifier Diode

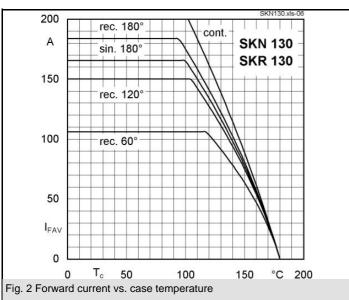
SKN 130 SKR 130

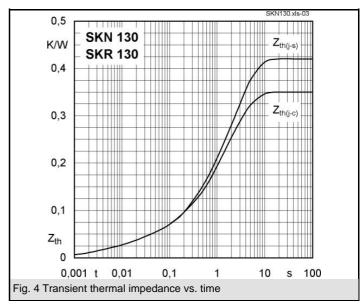
Features

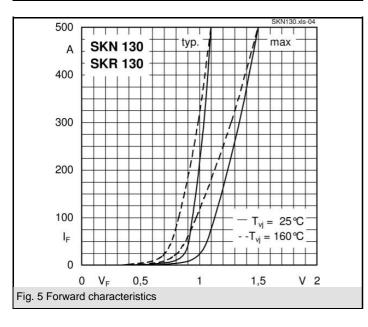

- Reverse voltages up to 1800 V
- Hermetic metal case with glass insulator
- Threaded stud ISO M12 x 1,5 (SKR 130 also 1/2 - 20 UNF or 3/8 - 24 UNF)
- SKN: anode to stud, SKR: cathode to stud

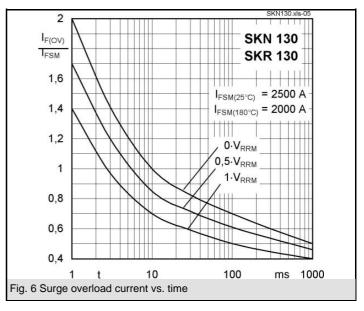

Typical Applications

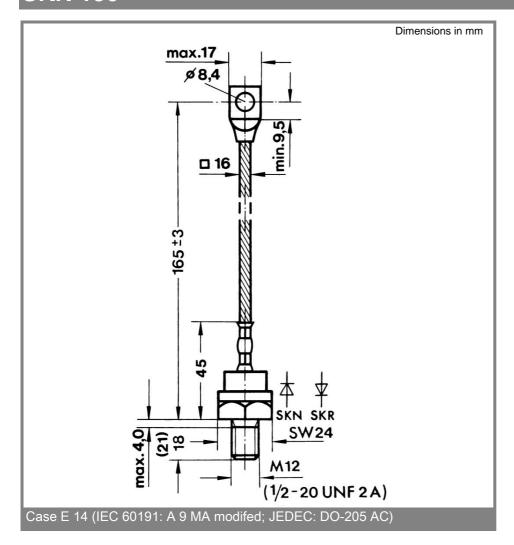

- All-purpose mean power rectifier diodes
- · Cooling via heatsinks
- Non-controllable and half-controllable rectifier
- · Free-wheeling diodes
- Recommended snubber network: RC: 0,25 μ F, 50 Ω , (P $_{R}$ = 2 W), R $_{P}$ = 50 k Ω (P $_{R}$ = 20 W)


V _{RSM}	V_{RRM}	I _{FRMS} = 260 A (maximum value for continuous operation)		
V	V	I _{FAV} = 130 A (sin. 180; T _c = 125 °C)		
400	400	SKN 130/04	SKR 130/04	
800	800	SKN 130/08	SKR 130/08	
1200	1200	SKN 130/12	SKR 130/12	
1400	1400	SKN 130/14	SKR 130/14	
1600	1600	SKN 130/16	SKR 130/16	
1800	1800	SKN 130/18	SKR 130/18	


Symbol	Conditions	Values	Units
I _{FAV}	sin. 180; T _c = 100 °C	165	Α
I _D	K 1,1; T _a = 45 °C; B2 / B6	160 / 225	Α
	K 1,1F; T _a = 35 °C; B2 / B6	290 / 405	Α
I _{FSM}	T _{vi} = 25 °C; 10 ms	2500	Α
	T _{vi} = 180 °C; 10 ms	2000	Α
i²t	T _{vi} = 25 °C; 8,3 10 ms	31000	A²s
	$T_{vj} = 180 ^{\circ}\text{C}; 8,3 \dots 10 \text{ms}$	20000	A²s
V _F	T _{vi} = 25 °C; I _F = 500 A	max. 1,5	V
$V_{(TO)}$	$T_{vj} = 180 ^{\circ}\text{C}$	max. 0,85	V
r _T	T _{vi} = 180 °C	max. 1,3	mΩ
I_{RD}	$T_{vj} = 180 ^{\circ}\text{C}; V_{RD} = V_{RRM}$	max. 22	mA
Q_{rr}	$T_{vj} = 160 ^{\circ}\text{C}$; - $di_F/dt = 10 \text{A/}\mu\text{s}$	120	μC
R _{th(j-c)}		0,35	K/W
R _{th(c-s)}		0,08	K/W
T_{vj}		- 40 + 180	°C
T _{stg}		- 55 + 180	°C
V _{isol}		-	V~
M_s	to heatsink	10	Nm
а		5 * 9,81	m/s²
m	approx.	100	g
Case		E 14	







This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.