

Circuit Diagram

- According IEC/EN 60 255, DIN VDE 0435-303
- Single-phase
- Can be used for under- or overcurrent detection
- Measuring ranges from 0,5 to 16 A
- Settable response value
- Without auxiliary voltage
- Width $22,5 \mathrm{~mm}$

Approvals and Marking

C ϵ

Applications

Because of the electromechanical construction the ML 9701 is insensitive to high voltage peeks with high energy and radio frequency disturbance. Special interference suppression is not necessary. The relay is used to monitor current in heatings, field current and motorprotection.

Function

The setting ratio is $1: 2$.
Please note when mounting the units without distance to each other:

1. If the relays are connected to DC current please connect all the units with the same polarity
2. If the relays are connected to $A C$ current please connect on all units terminal f to neutral
3. If the relays are connected to a 3-phase system it is possible that the relays influence each other by magnetic fields, so that the response value is increased by approx. 25%
If the units are mounted with a distance of $>22 \mathrm{~mm}$, the a.m. behaviour does not occur.

Technical Data

Input
Measuring range:

Setting:
Setting accuracy:
Hysteresis:
Nominal consumption:
Nominal frequency:
Frequency range:

$0,5 \ldots 1$	$0,8 \ldots 1,6$	$1,5 \ldots 3$	$2,5 \ldots 5$
$4 \ldots 8$	$6 \ldots 12$	$8 \ldots 16$ A	

AC approx. 0,85 / DC approx. 0,5 7 VA / 1,4 W $50 / 60 \mathrm{~Hz}$ ± 5 \%

Output
Contacts
ML 9701.11: 1 changeover contact
Thermal current $I_{t h}$: 4 A
Switching capacity
NO contact: 2 A / AC $230 \mathrm{~V} \quad$ IEC/EN 60 947-5-1
NC contact: $1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}$ IEC/EN 60 947-5-1

Technical Data	
Electrical life:	$1,2 \times 10^{6}$ switching cycles 1500 switching cycles / h at 30% of the switching capacity $0,8 \times 10^{6}$ switching cycles 1000 switching cycles / h at 50% of the switching capacity $0,3 \times 10^{6}$ switching cycles 500 switching cycles / h at 100% of the switching capacity
Permissible switching:	1000 switching cycles / h
Short-circuit strength max. fuse rating:	$2 \mathrm{~A} \mathrm{gL} \mathrm{IEC/EN} \mathrm{60} \mathrm{947-5-1}$
Mechanical life:	1,5 $\times 10^{6}$ switching cycles
General Data	
Operating mode: Temperature range:	Continuous operation see nomograph of overload and temperature range
Clearance and creepage distances rated impuls voltage / pollution degree:	$4 \mathrm{kV} / 3 \quad$ IEC 60 664-1
EMC	
Electrostatic discharge:	8 kV (air) IEC/EN 61 000-4-2
HF irradiation:	$10 \mathrm{~V} / \mathrm{m}$ IEC/EN 61 000-4-3
Fast transients:	2 kV IEC/EN 61 000-4-4
Surge voltages between	
wires for power supply:	1 kV IEC/EN 61 000-4-5
between wire and ground:	4 kV IEC/EN 61 000-4-5
HF-wire guided:	10 V IEC/EN 61 000-4-6
Interference suppression:	Limit value class B EN 55011
Degree of protection	
Housing:	IP 40 IEC/EN 60529
Terminals:	IP 20 IEC/EN 60529
Housing:	Thermoplastic with V0 behaviour according to UL subject 94
Vibration resistance:	Amplitude $0,35 \mathrm{~mm}$ frequency 10 ... 55 Hz IEC/EN 60 068-2-5
Climate resistance: Terminal designation:	Humid heat IEC/EN 60 068-2-30
	EN 50005
	$2 \times 2,5 \mathrm{~mm}^{2}$ solid or $2 \times 1,5 \mathrm{~mm}^{2}$ stranded wire with sleeve DIN 46 228-1/-2/-3/-4
Wire fixing:	Flat terminals with self-lifting clamping piece IEC/EN 60 999-1
Mounting:	DIN rail IEC/EN 60715
Weight:	250 g
Dimensions	
Width x height x depth:	$22,5 \times 80 \times 102 \mathrm{~mm}$
Standard Type	
ML 9701.11 0,8 ... 1,6 A Article number: - Output: - Measuring range: - Width:	0029209 stock item 1 changeover contact $0,8 \ldots 1,6 \mathrm{~A}$ $22,5 \mathrm{~mm}$
Ordering Example	
	- Measuring range Contact Type

Characteristics

Under- / Overcurrent

Undercurrent detection (closed circuit operation)
Example:
required response value: $\leq \mathrm{AC} 3 \mathrm{~A}$
setting value $=\frac{\text { required response value }}{\text { Hysteresis }}=\frac{3 \mathrm{~A}}{0,85}=3,5 \mathrm{~A}$
If the current exceeds $3,5 \mathrm{~A}$ the contact 11-14 closes. If the current drops under 3 A the output contact switches back to 11-12.

Overcurrent detection (open circuit operation)

Example:

required response value: $\quad \geq \mathrm{AC} 4 \mathrm{~A}$
= Setting value on ML 9701
If the current exceeds 4 A the contact $11-14$ closes. If the current drops under 3,4 A (hysteresis 0,85) the output contact switches back to 11-12.

Overload and ambient temperature:

Nomograph to evaluate the max. continuous overload depending on mounting distance and ambient temperature:

1. select ambient temperature e.g. $40^{\circ} \mathrm{C}$
2. select mounting distance e.g. 0 mm
draw a line throught the 2 points and extend it to the left scale.
Faxtor 1,2 means, that the relay can be used with 1,2 times overvoltage having an ambient temperature of 40 degrees and the relay is mounted without distance.
