VARIMETER
Motor Load Monitor
BA 9067

Function Diagram

Circuit Diagrams

BA 9067.38/001

BA 9067.38

- According to IEC/EN 60 255, DIN VDE 0435-303
- Detection of
- underload
- overload
- Measures effective power
- 1 changeover contact for underload,

1 changeover contact for overload

- Adjustable start-up delay t_{a}
- Adjustable operate delay
- Open or closed circuit operation
- Without neutral
- Optionally with neutral
- Width 45 mm

Approvals and Marking

C

Applications

The BA 9067 is used to monitor variable loads on industrial motors

Function

The BA 9067 monitors the effective power consumption $p=U \times I \times \cos \varphi$ of electrical consumers. With 2 potentiometers the underload and the overload value can be set. Under- and overload is indicated by 2 yellow LEDs as long as the motor is running on under- or overload. When the motor is switched of the LEDs turn off because the BA 9067 is also disconnected. After an operate delay an output relay is activated. In addition the unit includes a start-up delay and a green LED to show operational state. The BA 9067.38 is for single phase or 3 phase 4 wire systems and the BA 9067.38/001 for 3 phase 4 wire systems.

On DIP switches settable:

- Input current range up to $1,2,3,4,5 \mathrm{~A}$ or up to $2,4,6,8,10 \mathrm{~A}$
- closed or open circuit operation

Connection

The connection has to be made according to the connection diagrams. To feed in the motor current the terminals i and k have to be used keeping in mind the direction of the current. The terminal i is wired to the supply side and the terminal k to the motor side. The max. current over these terminals is 5 resp. 10 A . For higher values a current transformer must be used.

Connection Details

If the measurement is still incorrect the connections i and k must be exchanged against each other.

Technical Data	
Input	
Nominal voltage $\mathrm{U}_{\mathrm{N}}, \mathrm{L1} / \mathrm{N}$:	
BA 9067.38:	AC 230, 400 V
Nominal voltage U_{N}, L1/L2/L3:	
BA 9067.38/001:	3 AC 230, 400, 690 V
	Application class: II
	Voltage range: $0.8 \ldots 1.05 \mathrm{U}_{\mathrm{N}}$
Voltage range:	$0.8 \ldots 1.1 U_{\text {N }}$
Frequency range of U_{N} :	$50 / 60 \mathrm{~Hz}$
Nominal consumption:	2 VA
Nominal current:	1 ... 5 A (Terminals i-k), or $2 \ldots 10 \mathrm{~A}$
Max. overload:	$16 \mathrm{~A}, 3 \mathrm{~s}$
Setting Ranges	
P1:	1 ... 10 on relative scale
P2:	$1 . . .10$ on relative scale
Setting accuracy:	$\pm 3 \%$ of max. value
Operate delay t_{v} :	$0.1 \ldots 1 \mathrm{~s} \quad 1 \ldots 10 \mathrm{~s}$
Start-up delay t_{a} :	$0.3 \ldots 3 \mathrm{~s} \quad 1 \ldots 30 \mathrm{~s}$
Output	
Contacts	
BA 9067.38:	1 changeover contact for P_{1} 1 changeover contact for P_{2}
Release delay:	$\leq 50 \mathrm{~ms}$
Thermal current $\mathrm{t}_{\text {th }}$:	5 A
Switching capacity to AC 15	
NO contact:	$3 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}$ IEC/EN 60 947-5-1
NC contact:	$1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}$ IEC/EN 60 947-5-1
Electrical life:	IEC/EN 60 947-5-1
to AC 15 at $3 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}$:	2×10^{5} switching cycles
Permissible switching	
frequency:	1800 switching cycles / h
Short circuit strength max. fuse rating:	4 AgL IEC/EN 60 947-5-1
Mechanical life:	30×10^{6} switching cycles
General Data	
Operating mode:	Continuous operation
Temperature range:	- $20 . . .+60^{\circ} \mathrm{C}$
Clearance and creepage distances	
rated impuls voltage /	
pollution degree:	$4 \mathrm{kV} / 2 \mathrm{IEC60664-1}$
EMC	
Electrostatic discharge:	8 kV (air) IEC/EN 61 000-4-2
HF irradiation:	$10 \mathrm{~V} / \mathrm{m}$ IEC/EN 61 000-4-3
Fast transients:	2 kV IEC/EN 61 000-4-4
Surge voltages between	
wires for power supply:	1 kV IEC/EN 61 000-4-5
between wire and ground:	2 kV IEC/EN 61 000-4-5
HF-wire guided:	10 V IEC/EN 61 000-4-6
Interference suppression:	Limit value class B EN 55011
Degree of protection	
Housing:	IP 40 IEC/EN 60529
Terminals:	IP 20 IEC/EN 60529
Housing:	Thermoplastic with V0 behaviour according to UL subject 94
Vibration resistance:	Amplitude 0.35 mm frequency 10 ... 55 Hz IEC/EN 60 068-2-6
Climate resistance:	20/060/04 IEC/EN 60 068-1
Terminal designation:	$2 \times 2.5 \mathrm{~mm}^{2}$ solid or
	$2 \times 1.5 \mathrm{~mm}^{2}$ stranded wire with sleeve DIN 46 228/-1/-2/-3/-4
Wire fixing:	Flat terminals with self-lifting
	clamping piece IEC/EN 60 999-1
Mounting:	DIN rail IEC/EN 60715
Weight:	360 g
Dimensions	
Width x height x depth:	$45 \times 74 \times 131 \mathrm{~mm}$

Standard Type	
BA 9067.38/001 3 AC 400 V Article number: - Without neutral - Output: - Operate delay t_{v} : - Start-up delay t_{a} : - Nominal voltage U_{N} : - Nominal current: - Width:	```50/60 Hz tv=10s t}=30\textrm{s}5\textrm{A 0041104 stock item 1 changeover contact for underload, 1 changeover contact for overload 10 s 30 s 3 AC 400 V 5 \mp@code { A } 45 mm```
Variants	
BA 9067.38:	with neutral 3 AC 230, 400 V
BA 9067.38/020:	detects overload on 2 independent seetable overload values, open circuit operation
BA 9067.38/030:	same as BA 9067.38/020, but closed circuit operation

Ordering example for variants

BA 9067.38/001
for current < 10 A

Set-up Procedure

${ }^{\text {1) }}$ Attention: The required measuring range must be selected by

4putting the relevant DIP-switch to left position. All othe range selector DIP-switches are in right position.

Before setting up the unit we recommend to evaluate the current expected to flow in order to preset the current range with the DIP-switches.

Example:

Motor 55 kW

Nominal current 100 A
Current transformer to be used 100/5
DIP-switch to be set to position 5 A

Variant 1:

This method is recommended when the different load situations of the motor cannot be achieved during set-up.
1.) Calibration of the device according to the following equation:
$P_{\max }=\sqrt{ } 3 \times U_{N} \times I \times u ̈$
$P_{\max }=$ effective power measured by the device at max. scale value (pot in pos. 10)
$\mathrm{U}_{\mathrm{N}}=$ Nominal voltage of the three phase system (e.g. 400 V)
I = current selected on DIP-switches (e.g. 5 A)
ü $=$ transformation ratio of CT, if connected (e.g. 100/5 $=20$)
Result: $P_{\text {max }}=69.3 \mathrm{~kW}$
2.) Evaluate the efficiency factor of the motor at the required load situations from tables.
e.g.
$\eta \approx 0.9 \ldots 0.93$ depending on load for motors from $11 \ldots 55 \mathrm{~kW}$
$\eta \approx 0.7 \ldots 0.87$ depending on load for motors from $0.55 \ldots 7.5 \mathrm{~kW}$
3.) Calculation of the effective power P using the machnical output load $P_{\text {mech }}$ and the efficiency factor n at a certain load situation.

$$
\begin{aligned}
& P=P_{\text {mecc }} / \eta \\
& \text { e.g. at partial load } P_{\text {mech }}=30 \mathrm{~kW} \\
& \text { Result } P=33 \mathrm{~kW}
\end{aligned}
$$

4.) Setting of the upper response value (pot P 2) and the lower response value (pot P1) on scale.

Scale value $=10 \times P / P_{\max }=10 \times 33 / 69.3 \approx 5$
I. e. the potentiometer must be set to 5 , that the device trips at 30 kW motor load. Setting tolerances may lead to slightly different values.
5.) Do the same procedure for the 2.) response value
6.) Set the unit to the required functions:
closed or open circuit operation
start-up delay
operate delay

Set-up Procedure

Variant 2

This method is recommended when it is possible to simulate the different load situations during set-up. In this case nothing has to be calculated Turn the operate delay to min. The motor runs in underload while the Pot 1 is turned until the output relay switches. The same has to be done for overload. Now the unit is set accurately. Now adjust the operate delay and the start-up delay to the required values.

Variant 3

This method is the most simple one but not the most accurate. The operate delay is set to min . The motor is switched on and runs on nominal load. With both potentiometers the set points are searched by slowly turning the max. Pot from high to low value and the min. Pot from low to high value until the corresponding output relays switch. After that turn the Pot P2 slightly to the right side and the Pot 1 slightly to the left until the output relays reset The unit is now set and responds if the load differs from the nominal value. Finally set the operate delay and start up delay to the required values.

