SAFEMASTER S

Speed or Standstill Monitor

Function Diagram

$$
\begin{array}{ll}
\mathbb{N}_{A}: \text { proximity switch } A & \text { tres : reset time after connection of supply voltage } \\
\mathbb{N}_{\mathrm{B}}: \text { proximity switch } \mathrm{B} & \text { tws }^{\text {: operate delay after detection of standstill/underspeed }} \\
& \text { taus }^{\text {: release delay after detection of overspeed }}
\end{array}
$$

Block Diagram

- According to
- Performance Level (PL) e and category 3 to EN ISO 13849-1: 2008
- SIL Claimed Level (SIL CL) 3 to IEC/EN 62061
- Safety Integrity Level (SIL) 3 to IEC/EN 61508 and IEC/EN 61511
- For stop category 0 according to EN 418
- 2-channel input
- To monitor rotation and linear movement
- PNP proximity sensor inputs
- Optionally inputs for NPN proximity sensors
- Monitoring of connected sensor
- Fixed setting, adjustable as option
- Energized when speed is under setting value
- LED indication
- Feedback circuit X1 - X2 to monitor external contacts
- Forcibly guided contacts
- 2 NO, 1 NC contact
- Wire connection: also $2 \times 1.5 \mathrm{~mm}^{2}$ stranded ferruled (isolated), DIN 46 228-1/-2/-3/-4 or
$2 \times 2.5 \mathrm{~mm}^{2}$ stranded ferruled DIN 46 228-1/-2/-3
- Width 45 mm

* see variants

Applications

Monitoring of speed or standstill also during setup operation

Indication

Standstill monitoring:

1. green LED:
2. green LED:
on, when supply voltage connected
on, when standstill detected on channel 1

Overspeed monitoring:

1. green LED:
on, when supply voltage connected
2. green LED:
on, when no overspeed detected on channel 1
3. green LED: on, when no overspeed detected on channel 2

Circuit Diagram

Model with separate adjustable channels

range ${ }^{*}: \quad 8-60 / 60-450 / 450-3600 / 1800-14000 \mathrm{lpm}$
or $\quad 20-110 / 120-900 / 950-7000 / 3700-26000 \mathrm{lpm}$
Only operate switches while unit is disconnected

Model with common setting for both input channels

$$
\begin{array}{lcl}
\text { range*: 8-60 / 60-450 / 450-3600 / 1800-14000 } & \text { Ipm } \\
\text { or } & 7-90 / 60-700 / 470-5500 / 1800-21000 & \text { Ipm }
\end{array}
$$

Only operate switches while unit is disconnected

Model with common setting for both input channels and fine tuning to synchronise both channels

range*: 5-40/35-340/300-2700/1200-10500 lpm
or $\quad 10-80 / 80-650 / 600-5300 / 2400-20000$ Ip
Only operate switches while unit is disconnected

Notes

The device can be used for standstill and speed monitoring. All units have 2 sensing channels.

Variants

Three main variants are available:
BH 5932.22/_ _0: Devices with fixed tripping value
BH 5932.22/_ _2: Devices with separate adjustment for both channels
BH 5932.22/_ _1: Devices with common adjustment for both channels
BH 5932.22/_ _3: Devices with common adjustment for both channels and fine tuning to synchronise both channels

Setting ranges

On adjustable units the total range is split up in 4 sub ranges that can be selected with 2 DIP-switches per channel. To adjust the setting value in the selected range the potentiometers are used.

Adjustment of setting range

The number of pulses [lpm] to be adjusted can be calculated using the following formula:

Rpm \times number of sensing spots $=1 \mathrm{pm}$
e.g. 7.5 Rpm $\times 2$ sensing spots $=15 \mathrm{lpm}$

Operation as standstill monitor

Both channels must be adjusted so that they switch simultaneously. The maximum time after standstill detection until switching of the output relays is depending on the adjusted lpm value. This delay can be calculated as follows:
$\frac{60 \mathrm{~s}}{\text { adjusted Ipm-value }}+2.5 \mathrm{~s}=\mathrm{t}_{\text {vs }}$
$\mathrm{t}_{\mathrm{vs}} \hat{=}$ operate delay after standstill detection
e.g. at a setting of 15 lpm
$\underline{60 s}+2.5 s=6.5 s$
15

Operation as overspeed monitor

Especially on overspeed monitoring it is necessary to adjust both channels precisely on simultaneous switching. If the two channels switch not at the same time the disconnection of the drive is only made with the faster channel. The speed can drop immediately so that the slower channel does not detect overspeed and remains switched on. A new start is then disabled and the relay does not switch on again. A restart is only possible by desconnecting the power supply. To achieve an accurate setting the lpm setting value should be in the middle part of the setting range. The adjustment of simultaneous switching is easier on units with separate setting for each channel as on units with fine tuning potentiometer.

Proximity sensors

For safe operation the proximity sensors should be mounted vibration free. The position of the sensors should be chosen in a way that both sensors are operated simultaneously. Care must be taken that the sensors do not influence each other. The connection of the sensors to the supply is monitored. If there is an interruption in the sensor supply the corresponding output relay cannot be switched on, or if it is already on, it will switch off immediately. To achieve a fault free operation, the sensor must have draw at least 3 mA in off state. If sensors with lower consumption are used only devices without sensor detection can be operated. According to EN ISO 13849-1, the sensors must be checked for correct function in reasonalble time intervals.

Feedback circuit, reset, LEDs and timing

The reset circuit X1-X2 must be closed before connecting the power supply. The unit is ready for operation after typically 1.5 sec after the supply is connected.

The LEDs channel 1 and channel 2 are on when the corresponding relay is energized. The output contacts of the relays will only be activated if both input channels reach the enabling condition within a time span of approx. 2 sec. If the response value is not reached on both channels within this time, e.g. because of a defective sensor or because the sensors do not simultaneously switch the output contacts are not enabled.

Technical Data		Technical Data		
Input		Output		
Nominal voltage U_{N} :	$\begin{aligned} & \mathrm{AC} / \mathrm{DC} 24 \mathrm{~V} \\ & \mathrm{AC} 110,230 \mathrm{~V} \end{aligned}$	Contacts: Contact type:	$\begin{aligned} & 2 \mathrm{NO}, 1 \mathrm{NC} \\ & \text { forcibly guided } \end{aligned}$	
Voltage range		Thermal current I_{th} : 4 A		
AC: $\quad 0.85 \ldots 1.1 \mathrm{U}_{\mathrm{N}}$		Switching curren:	$\mathrm{AC}: 8 \mathrm{~A} \cos \varphi 1 \ldots 0.7$	
DC:	$0.9 \ldots 1.1 \mathrm{U}_{\mathrm{N}}$			
Nominal consumption: approx. $4 \mathrm{VA}, 2.5 \mathrm{~W}$		Switching capacity		
Nominal frequency	$50 / 60 \mathrm{~Hz}$	NO contact:	3 A AC 230 V IEC/EN 60 947-5-1	
Frequency range:	45 ... 65 Hz	NC contact:	$2 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}$ IEC/EN 60 947-5-1	
Start up reset time $\mathrm{t}_{\text {Res }}$:	1.5 s	nach DC 13 (3)		
Hysteresis:	typ. 6 \%	NO contact:	$1 \mathrm{~A} / \mathrm{DC} 24 \mathrm{~V}$ IEC/EN 60 947-5-1	
		NC contact:	$1 \mathrm{~A} / \mathrm{DC} 24 \mathrm{~V}$ IEC/EN 60 947-5-1	
Inputs for NPN- or optional PNP Proximity Sensors		according to DC 13		
Input voltage: DC 24 V		NO contact:	$4 \mathrm{~A} / \mathrm{DC} 24 \mathrm{~V}$ at 0.1 Hz	
		NC contact:	$4 \mathrm{~A} / \mathrm{DC} 24 \mathrm{~V}$ at 0.1 Hz	
Input current:	max. 25 mA (per channel)	Elektrical life to AC 15 at 2 A, AC 230 V :	IEC/EN 60 947-5-1	
Min. current of sensor	3 mA		$\geq 3 \times 10^{5}$ switching cycles	
Min. pulse time: 1 ms On, 1 ms Off		Short-circuit strength		
		max. fuse rating:	4 AgL IEC/EN 60 947-5-1	
IN_{A} und IN_{B} :	30000 lpm	Mechanical life:	$\geq 50 \times 10^{6}$ switching cycles	
Speed Ranges [lpm]		General Data		
Devices with fixed tripping value			Continuous operation	
BH 5932.22/_ _ 0 :	15/30 / 60 / 120 lpm, fixed	Temperature range	$-25+60^{\circ} \mathrm{C}$	
	others on request	operation:		
	(the output contacts close, when the	storage :	$\begin{aligned} & -25 \ldots+85^{\circ} \mathrm{C} \\ & <2.000 \mathrm{~m} \end{aligned}$	
	speed is under the fixed Ipm values)	altitude:		
Operate delay at standstill: Release delay on overspeed:	see formula	Clearance and creepagedistances		
	$\mathrm{t}_{\text {aus }}=\mathrm{typ} .700 \mathrm{~ms}$	distances rated impulse voltage /		
Devices with separate adjustment for both channels		pollution degree	IEC 60 664-1	
BH 5932.22/__2		Input / output	$4 \mathrm{kV} / 2$	
Range 8 ... 14000 lpm :	adjustable in 4 subranges	EMC		
	8 ...60, 60 ... 450, 450 ... 3600,	Electrostatic discharge:	8 kV (Air) IEC/EN 61 000-4-2	
	1800 ... 14000 lpm	HF irradiation:	$10 \mathrm{~V} / \mathrm{m}$ IEC/EN 61 000-4-3	
		Fast transients:	2 kV IEC/EN 61 000-4-4	
range 20 ... 26000 lpm :	adjustable in 4 subranges			
	20 ... 110, 120 ... 900, 950 ... 7000,	Surge voltagesbetween		
	3700 ... 26000 Ipm	wires for power supply:	1 kV IEC/EN 61 000-4-5	
Operate delay at standstill: see formula		between wire and ground:	2 kV IEC/EN 61 000-4-5	
Release delay on overspeed		HF -wire guided:	10 V IEC/EN 61 000-4-6	
$\begin{array}{ll}\text { Range 8 } \ldots \text {.. 14000: } & \\ \text { Range 20 ... 26000: } & \mathrm{t}_{\text {tof }}=\text { typ. } 700 \mathrm{~ms} \\ \mathrm{t}_{\text {off }}=\text { typ. } 350 \mathrm{~ms}\end{array}$		Interference suppression:	Limit class B EN 55011	
		at AC 24 V limit class A		
,			Degree of protection	
Devices with common adjustment for both channels		Housing:	IP 40 IEC/EN 60529	
BH 5932.22/__1		Terminals:	IP 20 IEC/EN 60529	
Range 8 ... 14000 lpm :	adjustable in 4 subranges 8 ... 60, 60 ... 450, 450 ... 3600,	Housing:	Thermoplastic with V0 behaviour according to UL subject 94	
Range 7 ... 21000 lpm :	1800 ... 14000 lpm oder	Vibration resistance:	Amplitude 0.35 mm frequency 10 ... 55 Hz IEC/EN 60 068-2-6	
	adjustable in 4 subranges			
	7 ... 90, 60 ... 700, 470 ... 5500,	Climate resistance:	20/060/04 IEC/EN 60 068-1	
	1800 ... 21000 lpm	Terminal designation:	EN 50005	
Operate delay at standstill: see formula Release delay on overspeed		Wire connection:	$1 \times 4 \mathrm{~mm}^{2}$ solid or	
			$1 \times 2.5 \mathrm{~mm}^{2}$ stranded ferruled (isolated)	
Range 8 ... 14000:	$\mathrm{t}_{\text {aus }}=\mathrm{typ} .700 \mathrm{~ms}$		or	
Range 7 ... 21000:	$\mathrm{t}_{\text {aus }}=\mathrm{typ} .350 \mathrm{~ms}$		$2 \times 1.5 \mathrm{~mm}^{2}$ stranded ferruled (isolated) DIN 46 228-1/-2/-3/-4 or	
Devices with common adjustment for both channels and fine tuning to synchronise both channels			$2 \times 2.5 \mathrm{~mm}^{2}$ stranded ferruled DIN 46 228-1/-2/-3	
BH 5932.22/ _ _ 3		Wire fixing:	Plus-minus terminal screws M3.5	
Range 5 ... 10500 lpm :	adjustable in 4 subranges		box terminals with wire protection	
	$5 \ldots 40,35 \ldots 340,300 . . .2700$,	Mounting:	DIN rail IEC/EN 60715	
	1200 ... 10500 lpm	Weight:	410 g	
or range 10 ... 20000 lpm :	adjustable in 4 subranges	Dimensions		
	10 ... 80, 80 ... 650, $600 . . .5300$,			
	$2400 \ldots 20000 \mathrm{lpm}$	Width x height x depth:	$45 \times 85 \times 121 \mathrm{~mm}$	
Operate delay at standstill: see formula				
Release delay on overspeed				
Range 5 ... 10500:	$\mathrm{t}_{\text {off }}=$ typ. 700 ms			
Range 10 ... 20000:	$\mathrm{t}_{\text {off }}=$ typ. 350 ms			

Technical Data

Safety Related Data

Values according to EN ISO 13849-1:

Kategorie:	3	
PL:	e	
MTTF $_{\mathrm{d}}:$	280.3	a (year)
DC / DC	avg:	99.0
d $_{\text {op }}:$	365	\%
$\mathrm{h}_{\mathrm{op}}:$	24	d/a (days/year)
$\mathrm{t}_{\text {zyklus }}:$	3600	h/d (hours/day)
	$\hat{=} 1$	s/Zyklus
		/h (hour)

Values according to IEC/EN 62061 / IEC/EN 61508 / IEC/EN 61511:

SIL CL:	3	IEC/EN 62061
SIL:	3	IEC/EN 61508 /
		IEC/EN 61511
HFT:	1	
DC / DC avg: :	99.0	$\%$
SFF:	99.7	$\%$
PFH $:$	$1.74 \mathrm{E}-10$	$\mathrm{~h}^{-1}$
PFD:	$1.49 \mathrm{E}-05$	
$\mathrm{~T}_{1}:$	20	a (year)

*) HFT = Hardware-Failure-Tolerance

intoThe values stated above are valid for the standard type. Safety data for other variants are available on request. The safety relevant data of the complete system has to be determined by the manufacturer of the system.

UL-Data

The safety functions were not evaluated by UL. Listing is accomplished according to requirements of Standard UL 508, "general use applications"

Switching capacity:

Ambient temperature $60^{\circ} \mathrm{C}$:
Pilot duty B300
4A 250Vac G.P.
4A 24Vdc
Wire connection:
$60^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}$ copper conductors only AWG 20-12 Sol Torque 0.8 Nm AWG 20-14 Str Torque 0.8 Nm

Technical data that is not stated in the UL-Data, can be found in the technical data section.

Standard Type

BH 5932.22/112

Article number:
AC/DC 24 V 20 ... 26000 Ipm
0059482
BH 5932.22/112 AC/DC $24 \mathrm{~V} \quad 8$... 14000 Ipm
Article number:

- Output:
- Nominal voltage U_{N}
- Input:
- Width:

0059478
2 NO, 1 NC contacts
DC 24 V
for pnp-sensors and with sensor detection
45 mm

Variants

BH 5932.22/_ _ _/61:
with UL-approval (Canada/USA)

Ordering example for variants

Connection Examples

Standard connection
suited up to SIL3, Performance Level e, Cat. 3

Connection with external contactors,
suited up to SIL3, Performance Level e, Cat. 3

Connection with proximity sensors
suited up to SIL2, Performance Level c, Cat. 2 (to achieve Cat. 2 the safety function has to be tested on a regulare base.)

Application Example

suited up to SIL3, Performance Level e, Cat. 3

Initiators (proximity sensors), induktive

Type	NA 5001.01.10 pnp NA 5001.01.20 npn	NA 5002.01.34 pnp/npn	NA 5005.01.34 pnp/npn	NA 5010.01.10 pnp NA 5010.01.20 npn
Dimensions		M12 $\times 1$ SW 17 M6936 a		
Enclosure	Metal	Metal	Metal	Metal
Switching distance S_{n}	1 mm	2 mm	5 mm	10 mm
Switching frequency	5000 Hz	1000 Hz	300 Hz	200 Hz
Hysteresis	2 ... 10 \%			
Repeat accuracy	5 \%			
Voltage range	$10 \ldots 30 \mathrm{~V}$			
Residual ripple	< 10 \%			
Continuous current	$\leq 200 \mathrm{~mA}$	$\leq 100 \mathrm{~mA}$	$\leq 100 \mathrm{~mA}$	$\leq 400 \mathrm{~mA}$
Output	.10 pnp NO 20 npn NO	$\begin{gathered} .34 \\ \text { pnp } \mathrm{NO}+\mathrm{npn} \mathrm{NO} \end{gathered}$	$\begin{gathered} .34 \\ \mathrm{pnp} \mathrm{NO}+\mathrm{npn} \mathrm{NO} \end{gathered}$.10 pnp NO .20 npn NO
Indication of output state	LED			
Ambient temperature	- $25 . .70^{\circ} \mathrm{C}$			
Temperature influence	10 \%			
Degree of protection	IP 67			
Connection wire	2 m			
Fixing torque	4 Nm	15 Nm	40 Nm	100 Nm
Weight	45 g	70 g	120 g	270 g

Connection Table BH 5932, BH 5932 / 00

Type	Wire	Terminal on $B H$ NA 50032
	brown +	$+\ln _{A} /+\ln _{B}$
	blue -	$-\ln _{A} /-\ln _{B}$
	black NO	$\ln _{A} / \ln _{B}$
	brown +	$+\ln _{A} /+\ln _{B}$
	blanc NO	$\ln _{A} / \ln _{B}$
NA 5010.01.20	black -	$-\ln _{A} /-\ln _{B}$
	brown +	$-\ln _{A} /-\ln _{B}$
	blue -	$+\ln _{A} /+\ln _{B}$
	black NO	$-\ln _{A} /-\ln _{B}$

Connection Table BH 5932, BH 5932 / 01

Type	Wire	Terminal on $B H 5932$
	brown +	$+\ln _{A} /+\ln _{B}$
	blue -	$-\ln _{A} /-\ln _{B}$
NA 5002.01.34	black NO	$\ln _{A} / \ln _{B}$
NA 5005.01.34	brown +	$+\ln _{A} /+\ln _{B}$
	blanc +	$+\ln _{A} /+\ln _{B}$
NA 5010.01.10	blue -	$-\ln _{A} /-\ln _{B}$
	black NO	$\ln _{A} / \ln _{B}$
	brown +	$+\ln _{A} /+\ln _{B}$
	blue -	$-\ln _{A} /-\ln _{B}$

ATTENTION!
Only the initiators NA5001.01.10, NA5001.01.20, NA5010.01.10 and NA5010.01.20 are usable for units with initiator-detection (BH 5932.22/1xx) !

