

Product description

The universal measuring relays MK 9300N / MH 9300 of the VARIMETER PRO series monitor up to 9 parameters simultaneously. These are under-, over-voltage, voltage range, voltage asymmetry, under-, overcurrent, cos phi, effective-, apparent- and reactive power, frequency and phase sequence, The measurement in 3-phase or single-phase systemes is very simple and without extensiv wiring. Because of the menue structure the multifunctional measuring relays can be used easyly and intuitively.
The early detection of up-coming break downs and preventive maintenance avoid expensive damages. As user you profit from the reliability and availability of your plant.

Function Diagram

Example: overvoltage monitoring with closed circuit operation

Your Advantage

- Min-, Max. value or window monitoring
- Simultaneous monitoring of up to 9 different parameters
- Simple configuration and fault diagnostic
- Different fault indications
- Large measuring range 3 AC 24 ... 690 V
- Auxiliary voltage ranges DC $24 \mathrm{~V}, \mathrm{AC} 230 \mathrm{~V}$ or AC/DC 110 ... 400 V
- Early detection of irregular states
- Space and cost saving
- Reduced wiring

Features

- Multifunction measuring relay acc. to EN 60255, VDE 0435
- Voltage monitoring (1- and 3-phase)
- Current monitoring
- Frequency monitoring
- Power factor cos phi
- Phase sequence, phase failure, asymmetry
- Effective-, reactive- and apparent power
- Start up delay, on delay
- Adjustable hysteresis 0.2 ... 50 \% of response value
- Manual reset
- LCD for indication of the measuring values
- Relay output

MK 9300N: 1 changeover contact MH 9300: 2×1 changeover contacts

- Relay function selectable (energized/de-energized on trip)
- As option with plugable terminal blocks for easy exchange of devices
- with screw terminals
- or with cage clamp terminals
- MK 9300N: Width 22,5 mm MH 9300: Width 45 mm

More Information

- MK 9300N

The MK9300N has 1 relay output.
Monitoring parameters can be set independently

- MH 9300

The MH 9300 has 2 relay outputs.
Monitoring parameters can be set independently
Each monitoring function can be assigned ro relay 1 and /or relay 2

Approvals and Marking

c ϵ

Applications

- Monitoring of single and 3-phase loads
- Emergency power supplies
- Voltage dependent switching at under- or overvoltage
- Voltage monitoring of portable equipment
- Motor protection on Phase failure
- Transformer protection on asymmetric load
- Frequency monitoring on inverter outputs

MK 9300N. 11

MH 9300.12

Connection Terminals
Terminal designation
A1 (+), A2
L1/i, L2, L3
Auxili, k
$11,12,14$
$21,22,24$

Function

After connecting the auxiliary supply to terminals A1-A2 the startup delay disables the monitoring function so that changes on the input have no influence on the relay output of the VARIMETER PRO. The device is in display (RUN) mode and continuously measures the actual values. The buttons (\uparrow and toggle between the different values. Pressing Esc for more than 3 sec starts the input mode.

One or more measuring values can be assigned to the relay output. If the setting value of at least one function is exceeded the relay switches and the display indicates this state. The display is inverted, flashes and shows measuring function and fault.

The fault memory is selectable
With button $\boldsymbol{\text { the fault memory can be deleted. }}$
On the unit MH9300 it is possible to assign different values to the different relays so one can be used as pre-warning and the other as alarm output. Relay output 1 switches when actual value exceeds the pre-warning setting of at least one assigned measuring function.
If a second setting assigned to relay output 2 with the same measuring function the unit gives an Alarm signal.

Remarks

To provide correct function the measuring voltage on L1/L2 has to be at least 20 V .

Load monitoring claims a symmetric load on all 3 phases as you have it usually with motors. The unit can also be used for single phase monitoring by bridging terminals L 2 and L 3 (the display then shows $\mathrm{U}_{\text {min }}=0$).

Overload within the current range is indicated by fast flashing of the LED.

Indication

The LED indicate the state.

```
green LED \(U_{N}\) :
```

on, when auxiliary voltage present at overload at current path
red LED (flashes)
No measurement, unit in input mode

Cursor LCD Display

10000
Rel. 1 Rel. 2 Sp1 Sp2

Manual reset activated: flashes when memory mode is ON and relay in failure state.
Reset with button "
\qquad Contact state of the output relays

Operating

UP I DOWN

Display (Run) - Mode

After power up the relay is in display (Run) mode.
(1) Scrolls the display to show one of the 10 possible values.

If a values exceeds the setting, the values is indicated flashing on inverted display. In the case of a fault display the display always returns to the fault value after pressing \uparrow. If voltage is missing on the measuring input some values cannot be calculated and a no value is shown.

Input-Mode

The measurement is interrupted, the relays are in failure state and the indicator LED has orange color
(1) Selection of parameters and setting of thresholds.

ENTER

Display (Run) - Mode:

Manual reset, when manual reset is selected for output relay
Reset works only when fault is removed

Input-Mode:

- Shifts cursor to the right
- Saves the value no-voltage safe
- Pressing for more than 3 sec: Change to display (Run) mode.

Esc Esc

Display (Run) - Mode

- Pressing for more than 3 sec : Change to input mode

Input-Mode:

- Shifts cursor to the left
- Leave setting without saving

LCD-Display

Setting of response values

$<$	Fault, when value drops under set point
$>$	Fault, when value exceeds set point
OFF	measurement disabled

If the adjusted threshold of at least one measuring function is exceeded, the corresponding relay output switches after the selected time delay tv and the fault is indicated on the display.
Manual reset can be activated or de-activated and is operated with on the unit.

Adjustable Parameter		
Limit values for Rel. 1 and Rel. 2 Selectable with buttons		Factory setting
$\mathrm{U}_{\text {min }}$:	Response value undervoltage, Lowest phase to phase voltage (Undervoltage relay)	OFF
$\mathrm{U}_{\text {max }}$:	Response value overvoltage, Highest phase to phase voltage L1, L2 or L3 (Overvoltage relay)	440 V
Asym:	Response value voltage asymmetry, Percentage of highest to lowest phase to phase voltage (Asymmetry relay)	20 \%
I:	Response value current at current path L1 (< under- / > overcurrrent)	$>8.00 \mathrm{~A}$
Cos-¢:	Response value phase displacement between current and voltage (< under- / > overload monitor)	OFF
P:	Response value effective power 3-phase Independent of phase sequence switches at adjusted value also at reverse power (< under- / > overload)	OFF
S:	Response value apparent power 3-phase (</>)	OFF
Q:	Response value reactive power (</>)	OFF
f:	Response value frequency (range $1 \ldots 400 \mathrm{~Hz}$) (< under / > overfrequency)	OFF
Hyst:	Hysteresis 0.2 ... 50% of response value	4.0 \%
tv:	On delay for relays ($0 \ldots 10 \mathrm{sec}$)	0 s
Phseq:	Monitoring phase sequence (ON / OFF)	ON
A / R:	Seting open- / closed circuit operation	R
Sp :	Error storage (ON / OFF)	OFF

Response values can be deactivated. (OFF)

Further Setting Parameter
Selectable with buttonsFactory setting
$\mathrm{t}_{\mathrm{a}}:$
Start up delay, when auxiliary voltage connected $(0.2 \ldots 10 \mathrm{sec})$ in steps of 0.1 s

Restore Factory Settings

(Auslieferungszustand wiederherstellen)
Before auxiliary voltage connected press button Esc).
During start press and hold.

Indicator output

Monitoring parameters can be set independently.
The MK9300N has 1 relay output.
The MH 9300 has 2 relay outputs.
Each monitoring function can be assigned to Relay 1 and/or to Relay 2. The switching mode energized or de-energized on trip can be set in input mode.

Display (RUN) Mode	Input-Mode
Display inverted when the actual value is in failure state.	Measurement interrupted, relays are in failure state, indicator LED orange color
(1) Scroll display between the 10 different measuring values.	Chose Rel1, Rel2, T_{a} and RUN As option address for RS485 Bus Chose parameter Change and set response values for Rel1 and Rel2.
Reset fault memory:	Esc Shift cursor to the left Shift cursor to the right
Esc) For more the 3 sec , change to input mode	- For more than 3 sec , change to display mode

Operating - Display - Menü (RUN) Mode

Cursor-
display

Cursor flashes during time delay tv

M11004_a

Technical Data

Auxiliary Voltage A1/A2

Nominal auxiliary voltage U_{H}	
MK 9300N:	DC $24 \mathrm{~V}\left(0.9 \ldots 1.1 \times \mathrm{U}_{\mathrm{H}}\right)$
MH 9300:	AC $230 \mathrm{~V}, 400 \mathrm{~V}\left(0.8 \ldots 1.1 \times \mathrm{U}_{\mathrm{H}}\right)$
	AC/DC $110 \ldots 400 \mathrm{~V}\left(0.8 \ldots 1.1 \times \mathrm{U}_{\mathrm{H}}\right)$
Nominal frequency:	$50 / 60 \mathrm{~Hz}$
Frequency range:	$45 \ldots 400 \mathrm{~Hz}$
Input current	50 mA
at DC $24 \mathrm{~V}:$	15 mA
at AC 230 V :	

Voltage Measuring Input L1/L2/L3
MK 9300N:
Nominal voltage:
Measuring range U_{m} :

MH 9300:

Nominal voltage:
Measuring range U_{m} :

Nominal frequency:
 Frequency range:

3 AC 400 V
3 AC $24 \ldots 400 \mathrm{~V}$
($0,8 \ldots 1,1 \times \mathrm{U}_{\text {M }}$)
3 AC $400 \mathrm{~V} / 690 \mathrm{~V}$
3 AC $24 \ldots 400 \mathrm{~V}, 24 \ldots 690 \mathrm{~V}$
($0,8 \ldots . .1,1 \times U_{\text {M }}$)
$50 / 60 \mathrm{~Hz}$
1 ... 400 Hz

Technical Data

Current Measuring Input \mathbf{i} / k

Nominal current:
Measuring range:
Max. overload
continuously:
short time < 10 s:

Nominal frequency:

Frequency range:

AC 12 A
AC $100 \mathrm{~mA} . . .12 \mathrm{~A}$
16 A
max. 25 A
If current range is overloaded, the LED
flashes fast
$50 / 60 \mathrm{~Hz}$
$45 \ldots 400 \mathrm{~Hz}$

Setting Range (absolute, via button and LCD-display)
Measuring accuracy
at nominal frequency
(in \% of setting value): $\quad \pm 4 \%$
Hysteresis
(in \% of setting value): $\quad 0.2 \ldots 50 \%$ of response value
Reaction time: $\quad<150 \mathrm{~ms}$
Adjustable on delay t_{v} : $\quad 0 \ldots 10 \mathrm{~s}$ (in steps of 0.1 s)
Adjustable start up delay t_{a} : $\quad 0.2 \ldots 10 \mathrm{~s}$ (in steps of 0.1 s)

Technical Data

Output Circuit (Rel1: 11/12/14; Rel2: 21/22/24)

Contacts:

MK 9300N:
MH 9300:
Thermal current $I_{\text {th }}$:
Switching capacity
to AC 15:
NO contacts:
NC contacts:
to DC 13
NO contacts:
NC contacts:
Electrical life
to AC 15 at 3 A, AC 230 V :
Permissible switching frequency:
short circuit strength
Max. fuse rating:
Mechanical life:

1 changeover contact
1 changeover contact (Rel1) and
1 changeover contact (Rel2)
2×4 A

3 A / AC 230 V
IEC/EN 60 947-5-1
1 A / AC 230 V

1 A / DC 24 V
1 A / DC 24 V
IEC/EN 60 947-5-1
IEC/EN 60 947-5-1
2×10^{5} switch. cycl. IEC/EN 60 947-5-1
1800 / h
$4 \mathrm{Agl} \quad$ DIN VDE 0660
30×10^{6} switching cycles

General Data

Nominal operating mode: continuous operation
Temperature range:

- $20 . . .+60^{\circ} \mathrm{C}$
(at range $0 \ldots-20^{\circ} \mathrm{C}$ limited
function of the LCD display)
Clearance and creepage distance
rated impuls voltage /
pollution degree:
high voltage test:
EMC
Electrostatic discharge (ESD):
Fast transients:
Surge voltage:
HF-wire guided:
Interference suppression:
Degree of protection Housing:
Terminals:
Housing:
Vibration resistance:

Climate resistance:
Wire connection
Screw terminal
(fixed):

Insulation of wires or
sleeve length:
Terminal block
with screw terminals
Max. cross section:

Insulation of wires or sleeve length:
Terminal block
with cage clamp terminals
Max. cross section:

Min. cross section: Insulation of wires or
sleeve length:
Wire fixing:

Mounting:
Weight:
MK 9300N:
MH 9300:

Dimensions

Standard Types

MK 9300N.11/022 3 AC 20 ... 440 V AC 12 A DC 24 V
Article number: 0063630

- Measuring voltage: 3 AC 20 ... 440 V
- Measuring current: AC 12 A
- Auxiliary voltage U_{H} : DC 24 V
- Output: 1 changeover contact
- Width: $\quad 22,5 \mathrm{~mm}$

MH 9300.12/022 3 AC $20 \ldots 440$ V AC 12 A AC 230 V
Article number: 0063631

- Measuring voltage: 3 AC $20 \ldots 440 \mathrm{~V}$
- Measuring current: AC 12 A
- Auxiliary voltage U_{H} : AC 230 V
- Output:

1 changeover contact (Rel1) and
1 changeover contact (Rel2)
45 mm

Ordering Example

MK 9300N . 11 _ $/ 0223$ AC $20 \ldots 440 \mathrm{~V}$ AC 12 A DC 24 V

Options with Pluggable Terminal Blocks

Screw terminal
(PS/plugin screw) (PC/plugin cage clamp)

Notes

Removing the terminal blocks with cage clamp terminals

1. The unit has to be disconnected.
2. Insert a screwdriver in the side recess of the front plate.
3. Turn the screwdriver to the right and left.
4. Please note that the terminal blocks have to be mounted on the belonging plug in terminations.

Width x height x depth:

MK 9300N:
$22.5 \times 90 \times 97 \mathrm{~mm}$
MH 9300:

Safety notes

Dangerous voltage.
Electric shock will result in death or serious injury.

Disconnect all power supplies before servicing equipment.

- Faults must only be removed when the relay is disconnected
- The user has to make sure that the device and corresponding components are installed and wired according to the local rules and law (TUEV, VDE, Health and safety).
- Settings must only be changed by trained staff taking into account the safety regulations. Installation work must only be done when power is disconnected.
- Observe proper grounding of all components

Set Up Procedure

The connection has to be made according to the connection examples. To connect the current of L1 the Terminals I and k are available. If the current to be measured exceeds the maximum continuous current of the input and external current transformer has to be used. If current is not measured input k remains unconnected.

Connection Example

M10940

