Energy Management Power Analyzer Type WM14-DIN "Basic Version"

CARLO GAVAZZI

- Optional dual pulse output
- Alarms (visual only) V_{LN}, An
- Optional galvanically insulated measuring inputs

Product Description

3-phase power analyzer with built-in programming keypad. Particularly recommended for displaying the main electrical variables. Housing for DIN-rail mount-

ing, (front) protection degree IP40, and optional RS485 serial port or dual pulse output. Parameters programmable by means of CptBSoft.

- Class 1 (active energy)
- Class 2 (reactive energy)
- Accuracy ±0.5 F.S. (current/voltage)
- Power analyzer
- Display of instantaneous variables: 3x3 digit
- Display of energies: 8+1 digit
- System variables and phase measurements: W, W_{dmd}, var, VA, VA_{dmd}, PF, V, A, An, A_{dmd}, Hz
- A_{max}, A_{dmd max}, W_{dmd max} indication
- · Energy measurements: kWh and kvarh
- Hour counter (5+2 DGT)
- TRMS meas. of distorted sine waves (voltages/currents)
- Power supply: 24V, 48V, 115V, 230V, 50-60Hz; 18 to 60VDC
- Protection degree (front): IP40
- Front dimensions: 107.8x90mm
- Optional RS422/485 serial port

How to order WM14-DIN AV5 3 D PG Model Range code **System** Power supply Option

How to order CptBSoft

CptBSoft (compatible only with S or SG options): software to program the working parameters of the power analyzer

Phase-phase voltage

Reactive power

Phase-neutral voltage

Active and Apparent power,

Type Selection		and to read the energy and the instantaneous variables.		
Range codes	System	Power supply	Options	
AV5: 380/660V _{L-1} /5(6)AAC VL-N: 185 V to 460 V VL-L: 320 V to 800 V AV6: 120/208V _{L-1} /5(6)AAC VL-N: 45 V to 145 V VL-L: 78 V to 250 V Phase current: 0.03A to 6A Neutral current: 0.09 to 6A	3: 1-2-3-phase, balanced/unbalanced load, with or without neutral	A: 24VAC -15+10%, 50-60Hz B: 48VAC -15+10%, 50-60Hz C: 115VAC -15+10%, 50-60Hz D: 230VAC -15+10%, 50-60Hz 3: 18 to 60VDC (not available in case of SG or PG options)	X: None S: RS485 port SG: RS485+galvanic insulated measurig inputs PG: Dual pulse output + galvanically insulated measuring inputs.	
Rated inputs Current "X-S options" Current "SG-PG options" Voltage Accuracy (display, RS485) (@25°C ±5°C, R.H. ≤60%) Current Neutral current	3 (non insulated each other) 3 (insulated each other) 4 with CT=1 and VT=1 AV5: 1150W-VA-var, FS:230VLN, 400VLL; AV6: 285W-VA-var, FS:57VLN, 100VLL 0.25 to 6A: ±(0.5% FS+1DGT) 0.03A to 0.25A: ±(0.5% FS+1DGT) 0.25 to 6A: ±(1.5% FS+1DGT)	Active energy "X-S option" Reactive energy "X-S option" Active energy "SG-PG opt." Reactive energy "SG-PG opt." Frequency Additional errors Humidity Temperature drift Sampling rate	Class 2 (start up "I": 30mA) Class 3 (start up "I": 30mA) Class 1 (start up "I": 30mA) Class 2 (start up "I": 30mA) ±0.1Hz (48 to 62Hz) ≤0.3% FS, 60% to 90% RH ≤200ppm/°C 1400 samples/s @ 50Hz 1700 samples/s @ 60Hz	
0.25 to 6A: ±(1.5% FS+1DG1) 0.09Ato 0.25A: ±(0.5% FS+7DG1)		Display refresh time	700ms	

Display

Read-out for instant. var.

Read-out for hour counter

Read-out for energies

±(1.5% FS +1 DGT)

 $\pm (0.5\% FS + 1 DGT)$

0.25 to 6A: ±(1% FS +1DGT);

0.03A to 0.25A: ±(1% FS+5DGT)

0.03A to 0.25A: ±(2% FS+5DGT)

0.25 to 6A: ±(2% FS +1DGT);

LED, 9mm

999 999 99.9)

9 999 9.99)

3+3+3 DGT (Max indication:

1+3+3 DGT (Max. indication:

3x3 DGT

Input specifications (cont.)

Measurements Coupling type	Current, voltage, power, power factor, frequency, energy, TRMS measurement of distorted waves. Direct	Input impedance 380/660V _{L-L} (AV5) 120/208V _{L-L} (AV6) Current	(PG-SG options) 1 MΩ ±1% 1 MΩ ±1% $\leq 0.02\Omega$
Crest factor	< 3, max 10A peak	Frequency	48 to 62 Hz
Input impedance 380/660V _{L-L} (AV5) 120/208V _{L-L} (AV6) Current	(X-S options) 1 M Ω ±5% 453 K Ω ±5% ≤ 0.02 Ω	Overload protection Continuos voltage/current For 500ms: voltge/current	1.2 F.S. 2 Un/36A

RS485 Serial Port Specifications

RS422/RS485 (on request)		Data (bidirectional)	
Туре	Multidrop bidirectional (static and	Dynamic (reading only)	System, phase variables and energies
	dynamic variables)	Static (writing only)	All configuration parameters
Connections	2 or 4 wires, max. distance 1200m, termination directly	Data format	1 bit di start , 8 data bit, no parity, 1 stop bit
	on the instrument	Baud-rate	9600 bit/s
Addresses Protocol	1 to 255, key-pad selectable MODBUS/JBUS		

CptBSoft software: parameter programming and reading data

CptBSoft	Multi language software to program the working parameters of the power analyzer and to read the energies and the instantaneous variables. The program runs under	Working mode	Two different working modes can be selected: - management of a local RS485 network; - management of communication from a single instrument to PC (RS232);
	Windows 95/98/98SE/2000/ NT/XP.	Data access	By means of RS485 serial port.

Dual pulse output

Digital outputs (on request) Pulse outputs Number of outputs Number of pulses Output type	2 (one for kWh one for kvarh) From 0.01 to 999 in compliance with the following formula: [Psys max (kW or kvar)*pulses (pulses/kWh or kvarh)] <14400 Relay	Insulation	Electrical life: min 2*10 ⁵ cycles Mechanical life: 5*10 ⁶ cycles ≥100ms <120ms (ON) ≥100ms (OFF) According to EN622053-31 By means of relays, 4000 V _{RMS} outputs to measuring inputs, 4000 V _{RMS} output to supply input.
2. 1. 21.	min current: 0.05A@250VAC/30VDC max current: 5A@250VAC/30VDC		Insulation between the two outputs: 1000V _{RMS}

Software functions

Password 1st level 2nd level	Numeric code of max. 3 digits; 2 protection levels of the programming data Password "0", no protection Password from 1 to 999, all data are protected		Page 5: An, An Alarm Page 6: W L1, W L2, W L3 Page 7: PF L1, PF L2, PF L3 Page 8: var L1, var L2, var L3 Page 9: VA L1, VA L2, VA L3 Page 10: VA Σ , W Σ , var Σ Page 11: VA dmd, W dmd, Hz
System selection	3-phase with/without n, unbal. 3-phase balanced 3-phase ARON, unbalanced 2-phase Single phase		Page 12: W dmd max (*) Page 13: Wh (*) Page 14: varh (*) Page 15: VL-L ∑, PF ∑, VLN Alarm
Transformer ratio CT VT Filter	1 to 999 1.0 to 99.9		Page 16: A max (*) Page 17: A dmd max (*) Page 18: hour counter (*) (*) = These variables are stored in EEPROM when the
Operating range	0 to 100% of the input		instrument is switched off
Filtering coefficient Filter action	display scale 1 to 16 Measurements, alarms, serial out. (fundamental var: V, A, W and their derived ones).	Alarms	Programmable, for the VL∑ and An (neutral current). Note: the alarm is only visual, by means of LED on the front of the instrument.
Displaying 3-phase system with neutral	Up to 3 variables per page Page 1: V L1, V L2, V L3 Page 2: V L12, V L23, V L31 Page 3: A L1, A L2, A L3 Page 4: A L1 dmd, A L2 dmd, A L3 dmd	Reset	Independent alarm (VL∑, An) max: A dmd, W dmd all energies (Wh, varh) and hour counter

Power Supply Specifications

Auxiliary power supply	230VAC -15 +10%, 50-60Hz 115VAC -15 +10%, 50-60Hz 48VAC -15 +10%, 50-60Hz	Power consumption	24VAC -15 +10%, 50-60Hz 18 to 60VDC AC: 4.5 VA DC: 4W
------------------------	--	-------------------	---

General Specifications

Operating temperature	0° to +50°C (32 to 122°F) (RH < 90% non condensing)		mesuring inputs and RS485. 4000VAC, 500VDC between
Storage	-30 to +60°C (-22 to 140°F)		power supply and RS485
temperature	(RH < 90% non condensing)	Dielectric strength	4000 VAC (for 1 min)
Installation category	Cat. III (IEC 60664, EN60664)	EMC	
Insulation (for 1 minute)	4000VAC, 500VDC between mesuring inputs and power supply. 500VAC/DC between	Emissions	EN50084-1 (class A) residential environment, commerce and light industry

General Specifications (cont.)

EMC (cont.) Immunity	EN61000-6-2 (class A) industrial environment.
Pulse voltage (1.2/50µs)	EN61000-4-5
Safety standards	IEC60664, EN60664
Approvals	CE, (cURus, CSA only "X" and "S" options)
Connections 5(6) A Max cable cross sect. area	Screw-type 2.5 mm ²

Housing Dimensions (WxHxD) Material	107.8 x 90 x 64.5 mm ABS
	self-extinguishing: UL 94 V-0
Mounting	DIN-rail
Protection degree	Front: IP40 (standard) Connections: IP20
Weight	Approx. 400 g (pack. incl.)

Display pages

Display variables in 3-phase systems (in a 3-phase system with neutral)

No	1 st variable	2 nd variable	3 rd variable	Note
1	V L1	V L2	V L3	
2	V L12	V L23	V L31	Decimal point blinking on the right of the display
3	A L1	A L2	A L3	
4	A L1 dmd	A L2 dmd	A L3 dmd	dmd = demand (integration time selectable from 1 to 30 minutes)
5	An	AL.n		AL.n if neutral current alarm is active
6	W L1	W L2	W L3	Decimal point blinking on the right of the display if generated power
7	PF L1	PF L2	PF L3	
8	var L1	var L2	var L3	Decimal point blinking on the right of the display if generated power
9	VA L1	VA L2	VA L3	
10	VA system	W system	var system	
11	VA dmd (system)	W dmd (system)	Hz (system)	dmd = demand (integration time selectable from 1 to 30 minutes)
12		W dmd MAX		Maximum sys power demand
13	Wh (MSD)	Wh	Wh (LSD)	The total indication is given in max 3 groups of 3 digits.
14	varh (MSD)	varh	varh (LSD)	The total indication is given in max 3 groups of 3 digits.
15	V LL system	AL.U	PF system	AL.U= is activated only if one of VLN is not within the set limits.
16	A MAX			max. current among the three phases
17	A dmd max			max. dmd current among the three phases
18	h			hour counter

MSD: most significant digit LSD: least significant digit

1) Example of kWh visualization:

This example is showing 15 933 453.7 kWh

2) Example of kvarh visualization:

This example is showing 3 553 944.9 kvarh

Waveform of the signals that can be measured

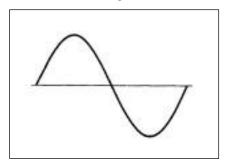
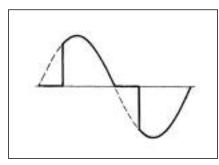
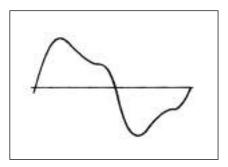
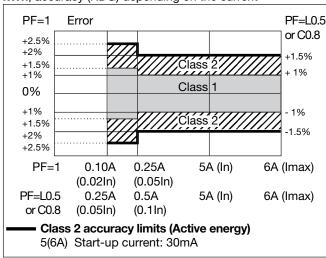
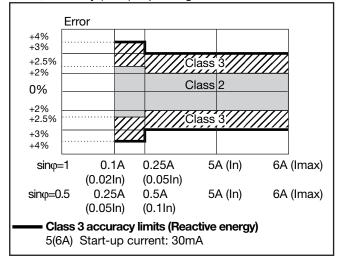


Figure A Sine wave, undistorted Fundamental content 100% Harmonic content 0% 1.1107 | A | $A_{rms} =$


Figure B Sine wave, indented Fundamental content 10...100% Harmonic content 0...90% Frequency spectrum: 3rd to 16th harmonic Additional error: <1% FS

Sine wave, distorted Fundamental content 70...90% Harmonic content 10...30% Frequency spectrum: 3rd to 16th harmonic Additional error: <0.5% FS


Accuracy

kWh, accuracy (RDG) depending on the current

kvarh, accuracy (RDG) depending on the current

Figure C

: this graph is only referred to instrument models with the "SG or PG" option.

: this graph is only referred to instrument models with the "X or S" option.

Used calculation formulas

Phase variables

Instantaneous effective voltage

$$V_{1N} = \sqrt{\frac{1}{n} \cdot \sum_{1}^{n} (V_{1N})_{1}^{2}}$$

Instantaneous active power

$$W_1 = \frac{1}{n} \cdot \sum_{i=1}^{n} (V_{1N})_i \cdot (A_1)_i$$

Instantaneous power factor

$$\cos \phi_1 = \frac{W_1}{VA}$$

 $cos \phi_1 = \frac{W_1}{VA_1}$ Instantaneous effective current

$$A_1 = \sqrt{\frac{1}{n} \cdot \sum_{i=1}^{n} (A_1)_i^2}$$

Instantaneous apparent power

$$VA_1 = V_{1N} \cdot A_1$$

Instantaneous reactive power

$$VAr_1 = \sqrt{(VA_1)^2 - (W_1)^2}$$

System variables

Equivalent 3-phase voltage

$$V_{\Sigma} = \frac{V_1 + V_2 + V_3}{3} * \sqrt{3}$$

3-phase reactive power

$$VAr_{\Sigma} = (VAr_1 + VAr_2 + VAr_3)$$

3-phase active power

$$W_{\Sigma} = W_1 + W_2 + W_3$$

3-phase apparent power

$$VA_{\Sigma} = \sqrt{W_{\Sigma}^2 + VAr_{\Sigma}^2}$$

3-phase power factor

$$\cos \varphi_{\Sigma} = \frac{W_{\Sigma}}{VA_{\tau}}$$

Neutral current

$$An = \overline{A}_{L1} + \overline{A}_{L2} + \overline{A}_{L3}$$

Used calculation formulas (cont.)

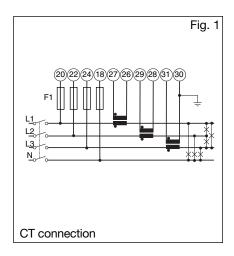
Energy metering

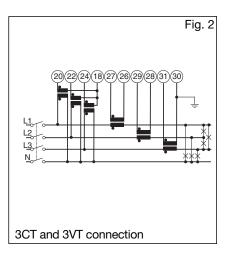
Where:

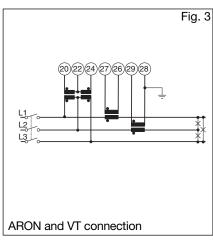
i = considered phase (L1, L2 or L3)

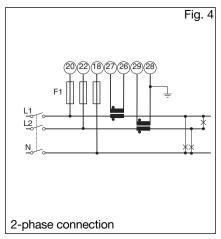
P = active power

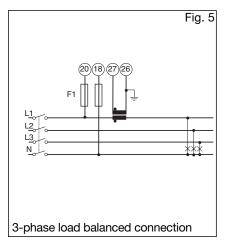
Q = reactive power

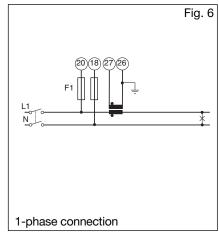

 t_1 , t_2 = starting and ending time points of consumption recording


n = time unit


 Δt = time interval between two successive power consumptions


 $n_1, n_2 \,{=}\, \text{starting}$ and ending discrete time points of consumption recording


Wiring diagrams

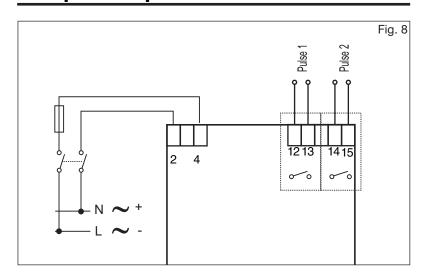


F1= 315mA

NOTE: Only for "**PG**" and "**SG**" options: the current measuring inputs are galvanically insulated and therefore they can be connected to ground singly.

NOTE: For all models except for "**PG**" or "**SG**" the current inputs can be connected to the lines ONLY by means of current transformers. The direct connection is not allowed.

ATTENTION: only one ammeter input can be connected to earth, as shown in the electrical diagrams.



RS485 port connections

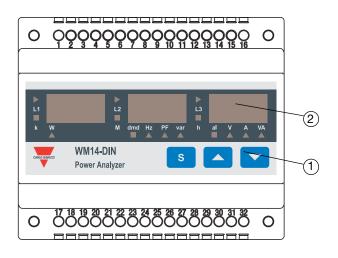

[b] [c] [a] GND GND (10)-GND (10) RS485 RS232 PC (11) (11) ☐ TX+ (12)-(12) RX+ RX+ (13)-(13) RX-RX-TX-(14) (14) RX+ TX+ TX+ 4-wire TX-(15) TX-(15) RXconnection [a] GND (10)-GND (10) GND (11) (11) RS485 RS232 PC (12) RX+ (12) TX+ (13) (13)-TX-(14)TX+ (14)-RX+ 2-wire TX-(15) TX-(15) RXconnection

Fig. 7: **a-**Last instrument; **b-**1...n Instrument **c-**RS485/232 serial converter

Dual pulse output connections

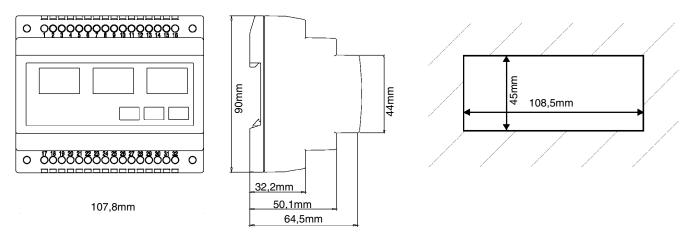
Front Panel Description

1. Key-pad

To program the configuration parameters and the display of the variables.

Key to enter programming and confirm selections;

Keys to:


- programme values;
- select functions;
- display measuring pages.

2. Display

LED-type with alphanumeric indications to:

- display configuration parameters;
- display all the measured variables.

Dimensions and Panel Cut-out

