DYMAPAR Encoder Installation Manual

Dynapar" brand SERIES HS35R Heavy Duty Hollowshaft Encoder

Document No.: 702761-0001
Revision Level: Y
Jan. 12, 2015

DESCRIPTION

The Series HS35R Sealed Hollowshaft encoder is equipped with an unbreakable disk that handles the most severe shock and vibration. Its hollow shaft mount and anti-rotation tether reduce bearing wear and maintenance. Series HS35R has electrical protection from overvoltage, reverse voltage, and output short circuits when ordered with standard operating temperature configuration.

Series HS35R is not only electrically \& thermally isolated (for shaft sizes $1.125^{\prime \prime}$ and under) but also environmentally sealed with shaft seals at both ends.

KEY FEATURES

- Phased Array Sensor for Reliable Signal Output
- Rugged Design Withstands up to 400 g Shock and 20g Vibration
- Unbreakable Code Disc up to 5000PPR
- Heavy Duty Design Rated for IP67
- Customizable Mounting Options including Torque Arm with Optional Grounding Strap

IMPORTANT INSTALLATION INFORMATION

Mounting the Encoder: Before Installation, ensure power is disconnected from encoder and motor or machine.

CAUTION: The loads applied to the encoder shaft must be in accordance with the specificatios of this device.
Important Wiring Instructions: Use of shielded cable is recommended for all encoder installations. The shield should be connected to signalground at the receiving device only.

Grounding: For applications with high ground potential differences, DO NOT ground the encoder through both machine and controls end. Connect the shield at the controls end only. NOTE: If the shield is connected at both ends, grounding problems that degrade system performance can result.

CE Grounding Measures - For best EMC immunity the cable screen must be grounded on both encoder and controls end. For cable lengths longer than 30 m or outdoor applications, additional measures must be implemented to comply with CE requirements. Connection of the encoder to DC power supply network is prohibited if CE compliance is required. CE-compliant products are tested to EN61326-1 EMC.

In all cases, system CE compliance is ultimately the responsibility of the manufacturer integrating the encoder.
Connecting the shield at both ends can cause grounding problems that degrade system performance.

If possible, run the encoder cable through a dedicated conduit (not shared with other wiring). Use of conduit will protect the cable from physical damage and provide a degree of electrical isolation. Do not run the cable in close proximity to other conductors that carry current to heavy loads such as motors, motor starters, contactors, solenoids, etc. This practice can induce electrical transients in the encoder cable, potentially interfering with reliable data transmission.

Refer to Electrical Connections table for wiring information. To avoid possible damage, do not connect or disconnect the encoder connector or wiring while power is applied to the system.

> CAUTION: Unused encoder signal wires must be individually insulated and under no circumstances be in contact with ground, voltage sources, or other signal lines.

Page 2

MECHANICAL INSTALLATION

A. GENERAL OVERVIEW

The following instructions are meant to assist in proper installation of Dynapar brand, Series HS35R hollowshaft encoders. The encoder is a speed and position transducer that when mounted to a rotating shaft, produces output pulses that are directly proportional to the shaft speed and direction. The hollowshaft encoder is attached to the motor shaft by using a clamp down collar. The HS35R can accommodate several machine shaft diameters by selecting the appropriate bore size. During installation, certain physical properties associated with the mechanical coupling must be observed to ensure a long operation life of the encoder.

B. SHAFT EXTENSION

Solid shaft preferred, keyway allowed; flatted shaft must not be used. The minimum shaft engagement length that will allow support to encoder housing is 1.25 ", Shaft engagement length of 1.60 " (40.6 mm) or longer is recommended for reduced wobble. The longest shaft length as measured from the mounting face that will allow installation of the shaft cover is 2.60 " (66 mm) maximum. Installations that employ a press-fit or screwed-on stub shaft adapter should align the stub shaft to $0.002^{\prime \prime}$ TIR or less with a dial indicator

C. TETHER POINT

For general industrial machinery and C-face motor installations, locate the tether hole at the nominal bolt circle location. The tether holes are slightly elongated, to allow for hole location tolerance and arcing of the tether, if the hole location is not flush with the tether surface.

HOLE LOCATION	BOLT SIZE	BOLT SIZE	RECOMMENDED TOROUE
$2.94^{\prime \prime}(75 \mathrm{~mm})$	$3 / 8^{\prime \prime}(9.5 \mathrm{~mm})$	$1 / 4^{\prime \prime}(6 \mathrm{~mm})$	$50-60 \mathrm{in}-\mathrm{lbs}$
$3.63^{\prime \prime}(92 \mathrm{~mm})$	$1 / 2^{\prime \prime}(12 \mathrm{~mm})$	$5 / 16^{\prime \prime}(8 \mathrm{~mm}$	$70-80 \mathrm{in}-\mathrm{lbs}$
$2.5^{\prime \prime}-3.25 "(63-82 \mathrm{~mm})$	$1 / 4^{\prime \prime}(6 \mathrm{~mm})$	$3 / 8^{\prime \prime}(9.5 \mathrm{~mm})$	$100-125 \mathrm{in}-\mathrm{lbs}$
		$1 / 2^{\prime \prime}(12 \mathrm{~mm})$	$125-150 \mathrm{in}-\mathrm{lbs}$

STEP 1: PREPARATION AND RECOMMENDED TOOLS

Disconnect power from equipment and encoder cable. Ensure that you have the proper tools. Typical tools that may be needed depending on the options chosen are:
\#2 Phillips Screwdriver; 5/32" Hex Wrench(US); Caliper Gauge; Dial Indicator Gauge; $3 / 8^{\prime \prime}, 1 / 2^{\prime \prime}$ or $1 / 4^{\prime \prime}$ T- handle Wrenches (tether options); Dynapar M100 encoder tester.

STEP 2: CHECK AND CLEAN THE MATING SHAFT

Ensure that the mating shaft is within proper tolerances.
Recommended mating shaft diameter tolerances should be nominal $+0.0000 " /-0.0005 "[0.00$ to $-0.013 \mathrm{~mm}]$ and shaft runout TIR should be under 0.002".
Clean the mating shaft of any burrs and check that mating shaft engagement is at least 1.25 " inside the encoder shaft. Using a dial indicator gauge verify that the motor shaft Total Indicated Reading (TIR) is less than 0.002 " $[0.05 \mathrm{~mm}$].

STEP 3: INSTALL ENDCAP

The encoder ships with an endcap to cover the back end of the encoder body, and although optional, is reccommended for additional environmental protection. To install, remove the factory installed three screws at the back of the encoder, properly discard the removed back plate and the three screws. Unpack the endcap, gasket and the three screws from the factory supplied kit. Align the three holes and fasten the gasket and end cap to the encoder body as shown.

STEP 4: INSTALL THE TETHER ON ENCODER

Rotate the tether to the required orientation and tighten the tether arm to the encoder body using the three screws provided. The hollowshaft series encoder tethers can be rotated in 15 degree increments so that connector or cable exit can be conveniently located.

STEP 5: INSTALL WASHERS ON TETHER

Slide the flat nylon washer on the side away from the bend and the flanged nylon washer on the side of the bend and press them together until they are fully seated in the tether hole. One steel washer is to be used on each side of the nylon washer.

STEP 6: SLIDE ENCODER ON SHAFT

Carefully slide the encoder all the way down until the tether rests on the motor face without any stress on the tether. Do not tighten the shaft clamp on the encoder yet

STEP 7A: SECURE TETHER TO MOUNTING FACE (MOTOR MOUN

Rotate the tether arm until it is at the correct orientation and is aligned with the mounting holes on the the motor or equipment. Install one steel washer on both sides of the nylon washer. Refer figure above. Fasten the tether arm to the motor or machine housing using the supplied $3 / 8$ " bolt ($4.5^{\prime \prime}$ C-face applications) or $1 / 2^{\prime \prime}$ bolt ($8.5^{\prime \prime}$ C-face applications). Ensure that there is no stress or flexing of the tether arm when secured.

STEP 7B: SECURE TETHER TO MOUNTING FACE (FAN COVER MOUNT)

Slide and insert the T-bolt as shown in the figure into the fan cover. Use the supplied insulating hardware and washers as shown. Tighten the jamnut to firmly secure the tether.

STEP 8: TIGHTEN ENCODER CLAMP ONTO MATING SHAFT

Check to make sure that the tether is still in its "unstressed" condition. Adjust position of encoder on shaft if necessary and then tighten the shaft clamp on the encoder. Tighten clamp to stated torque value provided on encoder datasheet (50-55 in-lbs.).
NOTE: ENCODER MODELS WITH SPLIT CLAMPS HAVE TWO SCREWS TO TIGHTEN DOWN. PLEASE ENSURE THAT BOTH SCREWS ON THE CLAMP ARE TIGHTENED DOWN SECURELY. YOU MAY HAVE TO ROTATE THE SHAFT TO TIGHTEN BOTH SCREWS DOWN.

STEP 9: GOOD INSTALLATION CHECK POINT

Follow the 3 step installation check to ensure a good installation thus far. Refer to figure above for key reference dimensions
A. Check clearances from mounting face. Ensure you have a minimum clearance of $1 / 16$ " between the encoder shaft and any nonrotating surface closest to the encoder shaft
B. Check tether installation. Make sure that the tether is unstressed. There should be no visible bending or deflection on any surface of the tether. Visible tether deflections should be corrected immediately. If the tether is bent or distorted, DO NOT USE, and call the factory for a replacement tether. Tether installation is critical to the long life of the bearings and improper tether installation will lead to excessive bearing loads and encoder failure.
C. Check wobble of encoder housing. Turn the shaft by hand and make sure that the shaft turns freely and does not produce excessive runout/wobble of the encoder. Most encoder installations will have wobble arising from shaft tolerances. Measure the wobble on the visible back face of the encoder. A wobble of less than 0.007 " TIR will not have any adverse effect on encoder performance. In general, the lower the TIR of runout, the better.
STEP 10: BASKET GUARD INSTALLATION (optional)

After installation of the encoder place the accessory cover over the encoder with the large opening over the connector or cable and shorter opening positioned over the tether. Ensure the cover is fully seated on the motor face and secure with bolts and washers provided. When mounting to a fan cover instead of a 56C face cover, center cover and drill 3 mounting holes($0.17^{\prime \prime}$) in diameter. Then use the 3 \#10-24 self tapping screws and washers provided. Install the warning label in the most conspicious position. Snap guard is to be used as shown (use if required).

Page 4

SPECIFICATIONS

STANDARD OPERATING CHARACTERISTICS

Code: Incremental
Resolution: to 5000 PPR (pulses/revolution) See Ordering Information

Format: Two channel quadrature (AB) with optional Index (Z), and complementary outputs
Phase Sense: A leads B for CW shaft rotation viewing the shaft clamp end of the encoder
Quadrature Phasing:
For resolutions 200 to 300PPR and 1200PPR and above: $90^{\circ} \pm 30^{\circ}$ electrical; all other resolutions: $90^{\circ} \pm 15^{\circ}$
Symmetry:
For resolutions 200-300PPR and above1024PPR: $180^{\circ} \pm 25^{\circ}$ electrical; all other resolutions: $180^{\circ} \pm 18^{\circ}$
Waveforms: Squarewave with rise and fall times less than 1 microsecond into a load capacitance of 1000 pf

ELECTRICAL

Input Power: 5-26VDC, 5-15VDC. 80 mA max., not including output loads.
Outputs: ET7272, ET7273, 4469, High-Power-Line-Driver
Frequency Response: 125 kHz (data \& index)
Noise Immunity: Tested to EN61326-1 EMC
Termination: MS Connector; M12 Connector; cable exit w/seal
See Ordering Information
Mating Connector: 6 pin MS, style MS3106A-14S-6S (MCN-N4)
7 pin MS, style MS3106A-16S-1S (MCN-N5)
10 pin MS, style MS3106A-18-1S (MCN-N6)
10 pin Bayonet, MS3116-F12-10S (607545-0001)
Cable w/ 5 pin M12 connector, p/n 112859-xxx Cable w/ 8 pin M12 connector, p/n 112860-xxx

ELECTRICAL CONNECTIONS

6, 7 \& 10 Pin MS Connectors and Cables - Code $6=0$ to 9, A to G

Connector \& mate/accessory cable assembly pin numbers and wire color information is provided here for reference. Models with direct cable exit carry the same color coding as shown for each output configuration

Encoder Function	$\begin{array}{\|c} \hline \text { Cable } \\ \text { \#108594-* } \\ 6 \text { Pin } \\ \text { Single Ended } \\ \hline \end{array}$		Cable\#112123-*6 Pin Dif LineDrv w/o Id x		Cable \#108596-* 7 Pin Dif Line Drv w/o Id x		Cable\#108595-*7 Pin(If Used)		Cable \#1400635or 109209- (NEMAA)10 Pin Dif Line Drw w/dx (If Used)		Cable\#108615-*12 Pin CCW(If Used)		Cable \# 114448-* 10Pin Bayonet	
	Pin	Wire Color												
Sig. A	E	BRN	E	BRN	A	BRN	A	BRN	A	BRN	5	BRN	A	BRN
Sig. B	D	ORN	D	ORN	B	ORN	B	ORN	B	ORN	8	ORN	B	ORN
Sig. Z	C	YEL	-	-	-	-	C	YEL	C	YEL	3	YEL	C	YEL
Power +V	B	RED	B	RED	D	RED	D	RED	D	RED	12	RED	D	RED
N/C	F	-	-	-	-	-	E	-	E	-	7	-	E	-
Com	A	BLK	A	BLK	F	BLK	F	BLK	F	BLK	10	BLK	F	BLK
Case	-	-	-	-	G	GRN	G	GRN	G	GRN	9	-	G	GRN
Sig. \bar{A}	-	-	C	BRN/WHT	C	BRN/WHT	-	-	H	BRN/WHT	6	BRN/WHT	H	BRN/WHT
Sig. \bar{B}	-	-	F	ORN/WHT	E	ORN/WHT	-	-	1	ORN/WHT	1	ORN/WHT	J	ORN/WHT
Sig. \bar{Z}	-	-	-	-	-	-	-	-	J	YEL/WHT	4	YEL/WHT	K	YEL/WHT
OV Sense	-	-	-	-	-	-	-	-	-	-	2	BLK/WHT	-	-
5V Sense	-	-	-	-	-	-	-	-	-	-	11	GRN	-	-

* 1) Note: Standard cable length is 10 feet but may be ordered in any length in 5 foot increment. For example, -0020 is a 20 foot cable.

2) "MS" type mating connectors and prebuilt cables are rated NEMA 12. "M12" Cable assemblies are rated IP67
3) For watertight applications, use NEMA4 10 pin cable \&connector 109209-XXXX.
\ddagger Only with cable option A thru G.

MECHANICAL

Shaft Material: 6061-T6 Aluminum
Bore Diameter: 6 mm to $28 \mathrm{~mm}, 1 / 4^{\prime \prime}$ to $1-1 / 8$ ", electrically isolated
Mating Shaft Length: 1.25 ", Minimum, $1.60^{\prime \prime}$, Recommended
Shaft Speed: 6000 RPM, Maximum (Enclosure Rating is IP64 at speed over 5000 RPM)
Starting torque: 8.0 in-oz. maximum (at $25^{\circ} \mathrm{C}$)
Running torque: $5.0 \mathrm{in}-\mathrm{oz}$. maximum (at ambient)
Bearings: ABEC 1
Housing and cover: Powder Coated Aluminum
Disc material: Plastic
Weight: 1.76lb (28 Oz) Typical
ENVIRONMENTAL
Standard Operating Temperature: -40 to $+85^{\circ} \mathrm{C}\left(0\right.$ to $+70^{\circ} \mathrm{C}$ with 4469 line driver, see "Ordering Information". At shaft speed above 3000 RPM, derate $10^{\circ} \mathrm{C}$ per 1000 RPM
Extended Temperature Range: -40 to $+100^{\circ} \mathrm{C}$ (See ordering information)
Storage temperature: -40 to $+100^{\circ} \mathrm{C}$
Shock: $400 \mathrm{~g}, 6 \mathrm{mSec}$
Vibration: 5 to $3000 \mathrm{~Hz}, 20 \mathrm{~g}$
Humidity: 100\%
Enclosure Rating: IP67 (IP64 at shaft speed above 5000 RPM)

DIMENSIONS ${ }_{[\mathrm{mm}]}^{\text {inch }}$

SHOWN WITH TORQUE ARM

$\xrightarrow{3.80}[96.5] \longrightarrow \begin{aligned} & \text { 452-572mm center-to-center without } \\ & \text { cutting and can be shortened via cutting } \\ & \text { to a minimum of } 61 \mathrm{~mm} \text {. }\end{aligned}$

LED OUTPUT OPTION

Dynapar Exclusive: The LED Output Indicator Option makes Dynapar brand the only encoders that show they are installed and operating correctly.
Green light emitting diodes (LEDs) are connected to the signal outputs of the encoder. Set to turn on when the output voltage falls below 2 volts, the LEDs will alternate as the encoder shaft is rotated. For models with differential, or complimentary outputs, a green LED is connected to the non-inverting output and a red LED is connected to the inverting output. In this case, the LED will alternate green-red as the non-inverting output, then the inverting output alternately pulse.
A visual indication of the status of the Index output - also called the Reference, Zero or Marker pulse - makes alignment of the electrical output to a physical point on the machine or process much easier. The encoder shaft is simply rotated until the Index LED turns on, then the shaft coupling is tightened to keep the encoder aligned with the mechanics.
Constant green or red LEDs indicate the corresponding output is permanently grounded, whereas no (green or red) indicating shows that an output is tied to the power supply. Yellow indications occur when both the green and red LEDs turn on at the same time, pointing to a grounded signal at the output that fails to turn off.

The LED Output Indicator Option is packaged in a sealed extruded aluminum housing, providing a rugged, washdown rated and high noise immunity feature that does not derate the encoder performance. Current draw is only 0.5 mA per channel, and the circuitry works with all electrical output configurations.

SPECIFICATIONS

Note: The following LED option specifications may supercede standard encoder specifications

LED Characteristics: On when output signal is < 2 VDC Input
Power: 5 to 26 VDC at 0.5 mA per channel; 0.5 mA max for unidirectional, 1.0 mA max for bidirectional, 1.5 mA max for bidirectional with Index
Electrical Protection: Over-voltage, reverse voltage and short-circuit protected

Noise Immunity: Tested to IEC801 level 3 for Electro Static Discharge, Radio Frequency Interference and Electrical Fast Transients
Standard Operating Temperature: -40 to $+85^{\circ} \mathrm{C}\left(0\right.$ to $+70^{\circ} \mathrm{C}$ with 4469 line driver, see "Ordering Information"). At shaft speed above 3000 RPM, derate $10^{\circ} \mathrm{C}$ per 1000 RPM
Extended Temperature Range: -40 to $+100^{\circ} \mathrm{C}$ (See ordering information)
Storage temperature: -40 to $+100^{\circ} \mathrm{C}$
Shock: 50 G's for 11 milliseconds duration
Vibration: 5 to 2000 Hz @ 20 G's
Humidity: to 98% without condensation
Enclosure Rating: NEMA12 / IP54 standard; NEMA4 / IP66 when ordered with shaft seal

Page 8

ORDERING INFORMATION

Code 1: Model	Code 2: PPR	Code 3: Bore Size	Code 4: Fixing	Code 5: Output Format	Code 6: Termination	Code 7:
Ordering Information						
HS35R Heavy-Duty, Hollowshaft Encoder	$\|$0001 0500 0003 0512 0010 0600 0012 0900 0015 1000 0032 1024 0050 1200 0060 1500 0100 2000 0120 2048 0200 2400 0240 2500 0250 3072 0300 4000 0360 4096 5000 				06 pin 17 pin 210 pin 312 pin 410 pin bayonet 56 pin+mating 67 pin+mating 710 pin+mating 812 pin+mating 9 10pin bayonet+mating A 0.5 m (18") cable C $1 \mathrm{~m}\left(36^{\prime \prime}\right)$ cable D 2 m (72") cable E 3m (120") cable F $0.3 \mathrm{~m}\left(13^{\prime \prime}\right)$ cable with 10-pin bulkhead connector and mate G 0.3 m (13") cable H 5 pin M12 J 8 pin M12	Blank No Option 01 Reverse Phasing (A leads B, CCW) Available when Code 5 is $0-2,6$ and 7 and when Code 6 is $0-2$ or 5-7 PS LED Output
			Not available when Code 5 is D, E, F, G, Q, R 4 Same as $1 \mathrm{w} /$ cover 5 Same as 3 w/cover C Same as A with 56C cover (Single Only)			
			Available when Code 5 is D, E, F, G, Q, R 6 Same as $1 \mathrm{w} /$ dual			
			cover Same as $3 \mathrm{w} /$ dual cover 8 Same as $2 \mathrm{w} /$	Not available when Code 6 is $0,1,5,6$, or H 6 Differential ABZ, 5-26VDC in, 5VDC out (7272) 7 Differential ABZ, 5-26VDC in, 5-26VDC out (7272) 8 Differential ABZ, 5-26VDC in, 5VDC out (4469)		
			 (single or dual output)	9 Differential ABZ, 5-15VDC in, 5-15VDC out (4469) D Dual isolated outputs, same as " 6 " E Dual isolated outputs, same as " 7 " F Dual isolated outputs, same as " 8 " G Dual isolated outputs, same as " 9 " N Same as "6" with Extended temp range P Same as " 7 " with Extended temp range Q Same as "D" with Extended temp range R Same as "E" with Extended temp range W ABZ, 10-24VDC Line Driver for cable runs up to $500 \mathrm{ft} / 120 \mathrm{~m}$ using the Dynapar cable assemblies listed below		

10 foot Cable Assemblies with MS Connector

108594-0010 6 Pin MS, Cable Assy. For Use with Single Ended Outputs
108595-0010 7 Pin MS, Cable Assy. For Use with Single Ended Outputs
108596-0010 7 Pin MS, Cable Assy. For Use with Differential Line Driver w/o Index Outputs
112123-0010 6 Pin MS, Cable Assy. For Use with Differential Line Driver w/o Index Outputs
1400635-0010 10 Pin MS, Cable Assy. For Use with Differential Line Driver with Index Outputs
114448-0010 10 Bayonet, Cable Assy. For Use with Differential Line Driver with Index Outputs
109209-0010 NEMA4 10 pin MS, Cable Assy. For Use with Differential Lne Driver with Index Outputs 10 foot Cable Assemblies with M23 Connector
108615-0010 12 M23, Cable Assy. For Use with Differential Line Driver with Index Outputs, CCW 15 foot Cable Assemblies with M12 Connector
112859-0015 5 Pin M12, Cable Assy. For Use with Single Ended Outputs
112860-0015 8 Pin M12, Cable Assy. For Use with Single Ended Outputs
112860-0015 8 Pin M12, Cable Assy. For Use with Differential Line Driver Outputs

Mating Connectors (no cable)

MCN-N4	6 pin, style MS3106A-14S-6S
MCN-N5	7 pin, style MS3106A-16S-1S
MCN-N6	10 pin, style MS3106A-18-1S
607545-0001	10 pin bayonet, style MS3116-F12-10S

Accessory Kits:
114573-0001 Tether Kit, 4.5" C-face single point with $3 / 8$ " bolt
114574-0001 Tether Kit, Slotted with T-bolts for standard AC motor fan covers
114575-0001 Tether Kit, 8.5" C-face single point with $1 / 2$ " bolt 114591-0001 Cover Kit, 56C face
114592-0001 Cover Kit, fan cover
114593-0001 Dual Cover Kit, 56C face
114928-0001 Dual Cover Kit, 180C-face
114594-0001 Dual Cover Kit, fan cover
116233-0001 Rod Tether only
116233-0002 Rod Tether + 56C face cover (single)
116233-0004 Rod Tether + grounding strap
116233-0005 Rod Tether + grounding strap +56C face cover (single)

Customer Service:
Tel.: + 1.800 .873 .8731
Fax: +1.847.662.4150
custserv@dynapar.com

Technical Support
Tel.: +1.800.234.8731
Fax: +1.847.662.4150
dynapar.techsupport@dynapar.com

European Sales Representitive Hengstler GmbH
Uhlandstrasse 49, 78554 Aldingen Germany
www.hengstler.com

