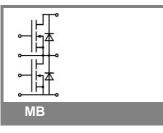
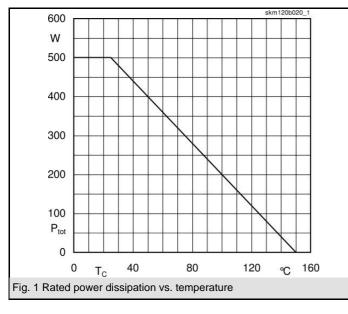


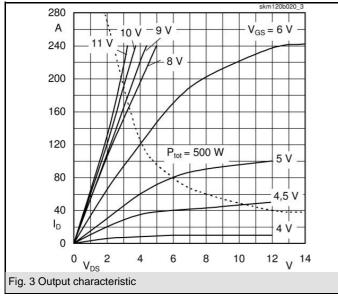
Power MOSFET Modules

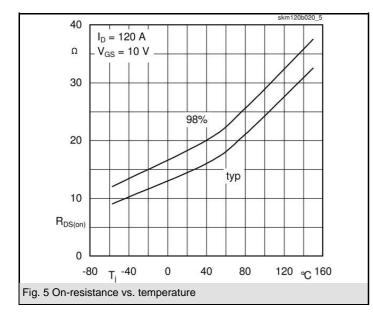
SKM 120B020

Features

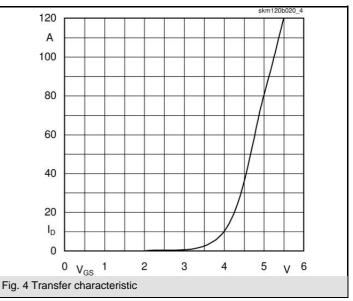

- N Channel, enhancement mode
- Short internal connections avoid oscillations
- Isolated copper baseplate using Al₂O₃ ceramic Direct copper bonding Technology (DCB)
- All electrical connections on top for easy busbaring
- Large clearance (10 mm) and creepage distances (13 mm)
- UL recognized, file no. E 63 532

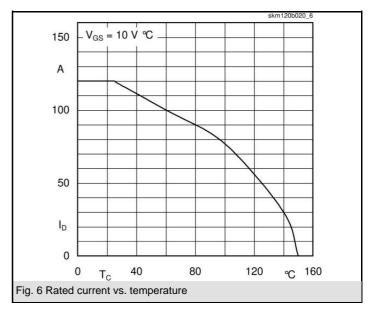

Typical Applications

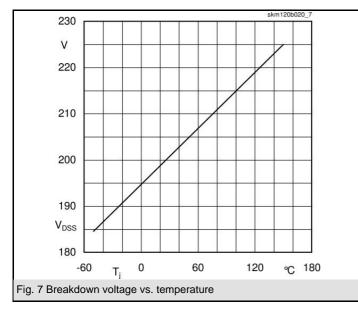

- Switched mode power supplies
- DC servo and robot drives
- DC choppers
- UPS equipment
- Plasma cutting
- Not suitable for linear amplification

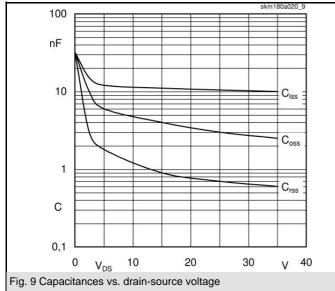

Absolute	Maximum Ratings	T_c = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units				
V _{DS}		200	V				
I _D	T _s = 25 (85) °C	120 (87)	А				
I _{DM}	1 ms	360	А				
V _{GS}		± 20	V				
T _{vj} , (T _{stg})		- 40 + 150 (125)	°C				
V _{isol}	AC, 1 min.	2500	V				
Inverse diode							
I _F = - I _S		120	А				
I_{FM} = - I_{SM}		360	А				

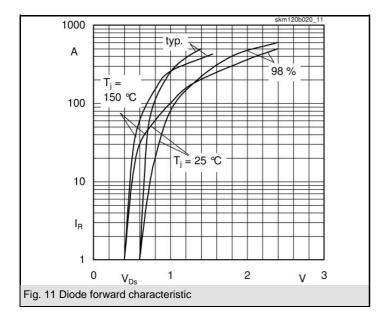
Characteristics		T_c = 25 °C, unless otherwise specified					
Symbol	Conditions	min.	typ.	max.	Units		
V _{(BR)DSS}	V _{GS} = 0 V, I _D = 0,25 mA	200			V		
V _{GS(th)}	$V_{GS} = V_{DS}, I_{D} = 1 \text{ mA}$	2,1	3	4	V		
I _{DSS}	$V_{GS} = 0 V, V_{DS} = 200 V,$ T _i = 25 (125) °C		50 (300)	250 (1000)	μA		
I _{GSS}	V _{GS} = 20 V, V _{DS} = 0 V		10	100	nA		
R _{DS(on)}	V _{GS} = 10 V, I _D = 200 A		15	17	mΩ		
9 _{fs}	V _{DS} = 25 V, I _D = 200 A	60	90		S		
C _{CHC}	V _{GS} = 0, V _{DS} = 25 V, f = 1 MHz			100	pF		
C _{iss}			10,4	16	nF		
C _{oss}			2	4,5	nF		
C _{rss}			1	1,4	nF		
L _{DS}				30	nH		
t _{d(on)}	V _{DD} = 100 V, I _D = 75 A,		120		ns		
t _r	V_{GS} = = 10 V, R_{G} = 3,3 Ω		60		ns		
t _{d(off)}			240		ns		
t _f			40		ns		
Inverse d	iode						
V _{SD}	I _F = 240 A; V _{GS} = 0 V		1,2	1,5	V		
t _{rr}	T _j = 25 (150) °C		400 (700)		ns		
Q _{rr}	T _j = 25 °C		5		μC		
l _{rr}	T _j = 150 °C		8		A		
Thermal	characteristics						
R _{th(j-c)}	per MOSFET			0,25	K/W		
R _{th(c-s)}	M_s , surface μ m, per module			0,05	K/W		
	Mechanical data						
M _s	to heatsink (M6)	4		5	Nm		
M _t	for terminals (M5)	2,5		3,5	Nm		
w				160	g		

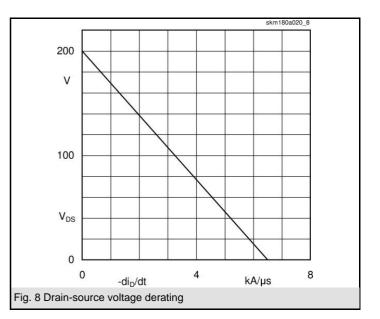


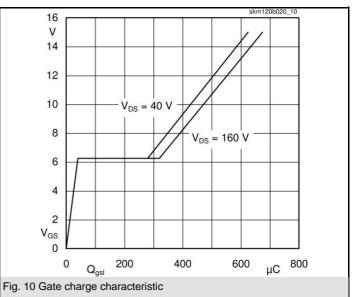


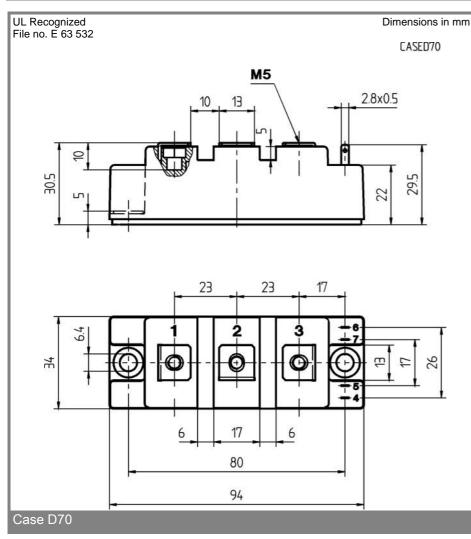


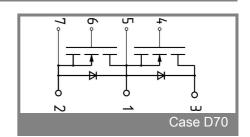












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.